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a b s t r a c t 

Neuroimaging has enhanced our understanding of the neural correlates of pain. Yet, how neural circuits interact 
and contribute to persistent pain remain largely unknown. Here, we investigate the mesoscale organization of 
the brain through intrinsic functional communities generated from resting state functional MRI data from two 
independent datasets, a discovery cohort of 43 Fibromyalgia (FM) patients and 20 healthy controls (HC) as well 
as a replication sample of 34 FM patients and 21 HC. Using normalized mutual information, we found that the 
global network architecture in chronic pain patients is less stable (more variable). Subsequent analyses of node 
community assignment revealed the composition of the communities differed between FM and HC. Furthermore, 
differences in network organization were associated with the changes in the composition of communities between 
patients with varying levels of clinical pain. Together, this work demonstrates that intrinsic network communities 
differ substantially between patients with FM and controls. These differences may represent a novel aspect of the 
pathophysiology of chronic nociplastic pain. 
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. Introduction 

An elusive goal of pain research is the identification of an objective
arker for the chronic pain state. Ideally this marker would be more

alient among chronic pain patients and would quantitatively track with
he severity of clinical pain sensation ( Tracey et al., 2019 ). In nociplas-
ic pain conditions, such as fibromyalgia (FM), altered central nervous
ystem function contributes to the perception of pain in the absence of
eripheral tissue damage or inflammation ( Harte et al., 2018 ; Sluka and
lauw, 2016 ; Woolf, 2011 ). Resting state fMRI can be used to under-
tand the intrinsic dynamics of the brain through measuring functional
onnectivity. Previous studies have identified disrupted intrinsic func-
ional connectivity in patients with chronic pain ( Baliki et al., 2008 ,
014 ; Basu et al., 2018 ; Hemington et al., 2018 ; Ichesco et al., 2014 ;
utch et al., 2017 ; Loggia et al., 2013 ; Napadow et al., 2012 , 2010 ).
et, these analyses examine functional connections between isolated
rain regions or resting state networks (RSNs) based on a priori hy-
otheses (e.g., seed connectivity or Independent Component Analysis)
 Chavez et al., 2010 ). The brain can also be studied as a network of nodes
i.e. brain regions) and edges (i.e. connections between each node) to
easure the contribution of all functional connections present in the
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E-mail address: telark@umich.edu (T.E. Larkin). 

ttps://doi.org/10.1016/j.neuroimage.2020.117504 
eceived 16 December 2019; Received in revised form 17 October 2020; Accepted 2
vailable online 24 October 2020 
053-8119/© 2020 Published by Elsevier Inc. This is an open access article under th
rain ( Rubinov and Sporns, 2010 ; Telesford et al., 2011 ). Adopting a
etwork-based approach provides insight to the global and local topol-
gy of large-scale functional networks. 

Within most networks, a collection of nodes can be organized into
nterconnected groups known as communities. The nodes within these
ommunities are intrinsically more connected to each other relative
o nodes in other communities within the network. This relationship
s quantified through a measure known as modularity, where net-
orks that are modular, segregated, in structure have higher mod-
larity ( Girvan and Newman, 2002 ; Newman, 2006b ; Rubinov and
porns, 2011 ). The composition of community structure between two
etworks can be quantified using normalized mutual information (NMI)
 Achard et al., 2012 ; Alexander-Bloch et al., 2012 ; Vinh et al., 2010 ).
pecifically, NMI is a global measure that quantifies similarity of com-
unity structure between two networks based on the assignment of
odes within each community. Local measures, such as phi, node al-
egiance or flexibility, explore node community assignment across net-
orks and how they may differ ( Bassett et al., 2011 ; Lerman-Sinkoff and
arch, 2016 ). Yet, it remains unknown how the functional brain intrin-
ically organizes into modules or communities in FM. 
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We hypothesized that the organization of functional communities
ithin the brain provides a brain-based marker of FM. We also hypoth-

sized that altered community assignment of specific nodes, or brain
egions, contributes to differences in network structure in FM and is
ssociated with the level of pain self-report. 

. Methods 

.1. Participants 

The novel analysis for this study included female fibromyalgia
FM) patients and healthy controls (HC) included in studies previously
ublished that investigated univariate resting state functional connec-
ivity and hub structure in chronic pain. Participants were divided
nto distinct discovery ( Cummiford et al., 2016 ; Harris et al., 2013 ;
chesco et al., 2016 ; Kaplan et al., 2019 ) and replication ( Harper et al.,
018 ; Ichesco et al., 2014 ; Schmidt-Wilcke et al., 2014 ) datasets of
onoverlapping FM patients and HC. Moreover, participants in both FM
nd HC groups were age matched within 2 years across discovery and
eplication datasets. The discovery dataset consisted of 43 female FM
atients and 20 (HC). 8 participants (5 FM and 3 HC) were removed
rom the analysis due to excessive motion or artifacts in fMRI data, re-
ulting in a total of 38 FM patients and 17 HC in the discovery dataset.
 separate cohort of 34 female FM patients and 21 HCs were combined

o create our replication dataset. 3 participants (2 FM and 1 HC) were
emoved from the analysis due to excessive motion, resulting in a total
f 32 FM patients and 20 HC in the replication dataset (Supplementary
able 1). 1 FM patient was not included in the analysis among low,
edium and high pain due to missing clinical variables. 

The Institutional Review Board at the University of Michigan ap-
roved the studies and written consent was obtained from all partic-
pants in accordance with the Declaration of Helsinki. Inclusion and
xclusion criteria varied across studies and were previously outlined
n Kaplan et al. (2019 ). General inclusion criteria for FM patients in
he discovery dataset were: meeting the American College of Rheuma-
ology (ACR) 1990 criteria for FM ( Wolfe et al., 1990 ) and at least 6
onths of self-reported chronic widespread pain, a score of ≥ 40 mm

n a 100 mm pain Visual Analog Scale (VAS) at the time of consenting.
ll participants were between 18 and 75 years of age, female, right-
anded, and capable of giving written informed consent. HCs were ex-
luded if they met the ACR criteria for FM. Additional exclusion for all
articipants were: contraindications of fMRI, positive urine drug screen
r history of drug or alcohol abuse within the past two years, preg-
ant or nursing mothers, body mass index greater than 36, sever psy-
hiatric illness, concurrent autoimmune or inflammatory disease that
auses pain or systemic malignancy or infection such as HIV or hepati-
is. In the replication dataset, inclusion criteria comprised: meeting the
990 ACR FM criteria with at least one year of disease duration, self-
eported persistent pain for more than 50% of each day, willingness to
orgo new treatments and medication use for FM during the study, be-
ween 18 and 75 years of age, right-handed and capable of giving written
nformed consent. Participants were excluded based on current or past
pioid or narcotic analgesics, history of substance abuse or severe psy-
hiatric illness, concurrent autoimmune or inflammatory disease that
ay contribute to pain, or concurrent participation in other therapeutic

rials 

.2. Clinical assessment of pain, depression and anxiety 

Clinical pain, depression and anxiety ratings for each participant
ere acquired prior to the scan session (Supplemental Table 1). Clin-

cal pain was assessed on a visual analog scale (0–100), with 0 being
no pain ” and 100 being “worst pain imaginable ” prior to the scan. In
ur discovery data, Hospital Anxiety and Depression Scale (HADS) were
sed to assess anxiety and depression ( Zigmond and Snaith, 1983 ). A
ubset of patients in the replication dataset completed the Center for Epi-
emiologic Studies Depression Scale (CES-D) to assess depression and
tate-Trait Anxiety Inventory (STAI) to assess anxiety ( Bieling et al.,
998 ; Radloff, 1977 ). In order to compare clinical variables across
ll subjects, cutoff values for depression and anxiety were used to
plit patients into two groups: possibly depressed or anxious, or not
 Aparicio et al., 2013 ; Julian, 2011 ; Smarr and Keefer, 2011 ). Cut off
alues were as follow: HADS – Depression: greater than or equal to 8;
ADS – Anxiety: greater than or equal to 9; STAI: greater than 40; CESD:
reater than or equal to 18. 

.3. fMRI methods 

.3.1. fMRI data acquisition and preprocessing 

Imaging data were acquired on a 3T GE Signa 9.0, VH3 scan-
er (Milwaukee, WI) using an 8-channel head coil. Six minutes of
esting state fMRI data were acquired using a T2 ∗ weighted spiral-
n sequence (TR/TE:2000/30 ms) with 180 vol., as previously de-
cribed ( Kaplan et al., 2019 ) (Supplemental Table 2). A T1-weighted
igh-resolution anatomical scan was also acquired. During the rest-
ng state scan subjects were instructed to stay awake with their
yes open on a fixation cross. Since cardiac and respiratory fluc-
uations are known to influence brain connectivity within several
etworks, physiological data were collected simultaneously using a
hest plethysmograph and infrared pulse oximeter ( Birn et al., 2006 ;
hang and Glover, 2009 ). fMRI data were preprocessed and analyzed
sing Statistical Parametric Mapping (SPM) software package version
2 ( https://www.fil.ion.ucl.ac.uk/spm ), and the Conn functional con-
ectivity toolbox (Cognitive and affective neuroscience laboratory, MIT,
ambridge, USA) both running on MATLAB 2014a. Upon collection of

MRI data, physiological artifacts are first removed using RETROICOR
lgorithm in MATLAB and slice time corrected using FSL (FMRIB’s Soft-
are Library, www.fmrib.ox.ac.uk/fsl ) software. Preprocessing steps in-

lude motion correction, realignment, co-registration to anatomical im-
ge, normalization to standard MNI template, and smoothing (FWHM
aussian kernel of 8 mm). Preprocessed fMRI data were entered into

he Conn Toolbox in which CompCor including six subject-specific mo-
ion parameters, fMRI signal from white matter and CSF, and their first
rder derivatives as confounds ( Behzadi et al., 2007 ). A temporal filter
f 0.01 – 0.1 Hz was applied to focus on low frequency fluctuations in
he fMRI data. 

.3.2. Motion 

Subjects were excluded at multiple steps in the preprocessing
ipeline due to excess motion, consistent with previous methods from
ur group ( Kaplan et al., 2019 ). Motion parameters were calculated from
he six head realignment parameters (x, y, z, pitch, yaw, roll) during
he resting state scan for each participant (Supplemental Fig. 1). First,
articipants were removed from the analyses if framewise displacement
xceed ± 2 mm translation or ± 1° rotation in any directions during
he scan session. The mean and standard deviation for each of the six
otion parameters were also calculated for each subject to determine

roup differences in motion parameters for each dataset. The six motion
arameters were combined into a scalar quantity, instantaneous frame-
ise displacement ( Power et al., 2012 ). Mean and maximum framewise
isplacement (meanFD and maxFD) were calculated as the average and
aximum instantaneous framewise displacement across the entire fMRI

can session for each participant. Lastly, outliers were identified as par-
icipants that had meanFD more than three standard deviations (i.e. z-
core > 3) above the mean and were also excluded from analyses. To
onfirm motion does not contribute to group differences in NMI or phi,
eanFD and maxFD were included in the final model to test for group
ifference NMI (FM-FM vs. HC-HC) as nuisance covariates. Addition-
lly, we assessed the correlation between both meanFD and maxFD with
ithin group NMI (Supplemental Fig. 3). 

https://www.fil.ion.ucl.ac.uk/spm
http://www.fmrib.ox.ac.uk/fsl
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Fig. 1. Functional brain networks were constructed from resting state fMRI data. (a) Individual brain networks were generated from functional correlation 
matrices using community detection. (b) Normalized mutual information (NMI), a measure of global network similarity was used to determine whether network 
organization was conserved between two networks. Higher NMI values indicate greater similarity in community structure between two networks. (c) Nodal measures 
such as Pearson’s phi coefficient (phi) quantifies the similarity of node community assignments between two networks. (d) The community ratio quantifies how 

nodes may differ in their community assignment based on the frequency distribution of node community assignment within a group. (Community were labeled in 
representative networks – Green, Yellow, Red. White arrow identifies node used to determine frequency distribution.) 
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.4. Graph theoretical analyses 

The steps for the creation of individual subject graphs are outlined
n Fig. 1 . Preprocessed fMRI data were entered into the Conn toolbox
o create functional correlation matrices from regions of interest were
ased on the 264 brain regions previously shown to produce functional
etwork topologies at rest and during task ( Power et al., 2011 ; Whitfield-
abrieli and Nieto-Castanon, 2012 ). Using the Brain Connectivity Tool-
ox and custom MATLAB codes, functional networks were generated
or individual subjects using community detection methods that maxi-
ize modularity and consider the fully connected and weighted correla-

ion matrix with 1000 repetitions ( Blondel et al., 2008 ; Newman, 2004 ;
ubinov and Sporns, 2010 , 2011 ). Consensus analyses were used to
enerate each subject-specific network. Specifically, agreement matri-
es were generated which calculate the number of times two nodes are
n the same community. A threshold, tau, was applied to each matrix
rom 0.1 to 0.9 at an interval of 0.1 to create subject-level partitions
 Betzel et al., 2014 ; Lancichinetti and Fortunato, 2012 ). 

.4.1. Modularity 

A partition of networks into non-overlapping communities or mod-
les can be achieved using modularity maximization ( Blondel et al.,
008 ; Newman, 2006a ). Measures of modularity quantify the good-
ess of modular partitions such that networks with stronger connections
ithin a module, or community, compared to between modules have
igher values. Modularity values were calculated based on the fully
eighted matrix from the consensus generated subject level partition
 Blondel et al., 2008 ; Rubinov and Sporns, 2011 ). 

.4.2. Normalized mutual information 

To quantify group differences in global networks among participants,
e used normalized mutual information (NMI). NMI measures pair-
ise similarity between two network partitions, across all participants
 Alexander-Bloch et al., 2012 ; Vinh et al., 2010 ) ( Fig. 1 b). Stemming
rom information theory, mutual information (MI) quantifies the degree
o which two clusters share similar solutions. MI is 0 when two networks
re completely random and 1 when networks are identical. Normaliza-
ion of mutual information (NMI) improves the sensitivity of network
omparison of two networks with varying number of communities. Net-
orks that have similar community structure have higher NMI values,
s lower NMI suggests that networks are different in their organization.
etails of the use of NMI measures on brain networks have been de-

cribed previously ( Achard et al., 2012 ; Alexander-Bloch et al., 2012 ;
havez et al., 2010 ). For each subject, within-group NMI values were
alculated from the mean NMI between all subjects within the same
roup (within: FM-FM, or HC-HC). We also calculated between-group
MI (FM-HC) as the mean pairwise NMI between all subjects in a dif-

erent group. Higher NMI values suggest greater similarity in community
tructure between two networks. 

.4.3. Group consensus functional networks 

Group consensus networks were constructed as previously described
 Alexander-Bloch et al., 2012 ). Subject network partitions at thresh-
ld, tau = 0.40, were used to generate an agreement matrix for the FM
nd HC group independently. In this framework, the agreement matrix
easures how consistent two nodes appear within the same community

cross subjects within the FM and HC group separately. Group consensus
artition or networks were based on tau thresholds between 0.1 and 0.9,
t intervals of 0.1. We found that the number of communities increase
ith tau thresholds. We report the group consensus networks generated
t tau thresholds of 0.50 (50% agreement within the group) across each
greement matrix because the number of communities were consistent
etween FM patients and HC at this threshold (Supplemental Fig. 2). 
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.4.4. Phi analysis 

A node’s community assignment is a local measure that identifies
ts contribution to the organization of a network. We identified which
odes may contribute to the group differences in NMI using a Phi test to
uantify pairwise similarity of node community assignments ( Fig. 1c )
 Alexander-Bloch et al., 2012 ; Lerman-Sinkoff and Barch, 2016 ). For
ach subject, a binary matrix was generated based on whether a given
ode was in the same community as all other nodes (1) or in a dif-
erent community (0). The binary matrices were then used to gener-
te a node similarity measure (phi) using Pearson’s phi coefficient. The
ithin-group mean phi was calculated for all subject-by-subject node
airs. Higher phi values suggest the node is frequently a member of the
ame community across participants (i.e. strong allegiance). Low phi in-
icates that the node community assignment is variable and frequently
hifts allegiance between different communities across participant net-
orks. 

.4.5. Community ratio 

To assess how a node differs in its community membership, we exam-
ned the variation of community assignment for each node within each
roup of low and high pain participants (See examples in Fig. 7 ). Among
oth groups, we discovered that nodes were either assigned to one com-
unity or split between two or more communities in our dataset. We

rouped these nodes based on their patterns: Pattern A, Pattern B, Pat-
ern C, and Pattern D. Nodes that follow Pattern A were split between
ommunities 1 and 3. Pattern B consisted of nodes that are predomi-
ately in community 2. The nodes grouped in Pattern C and D are pri-
arily in community 3 and community 1, respectively. 

The community ratio examines the variation in node community as-
ignment further through quantifying the distribution of node commu-
ity assignment differs between low and high pain FM networks. The
lpha ratio quantifies the average frequency nodes were assigned to
ommunity 1 and 3 relative to community 2. A lower Alpha ratio sug-
ests that a node may often be assigned in community 2. The Beta ratio
xamines whether nodes are assigned to community 1 or 3, by calcu-
ating the frequency nodes were assigned to community 1 relative to
ommunity 3. A lower Beta ratio suggests a node is primarily in com-
unity 3 among a group of networks. An alternative interpretation of

he community ratio is that the Alpha ratio determines the scale in which
 node exhibits Pattern A relative to Pattern B within a group. The Beta
atio explains the proportion in which a node exhibits Pattern D relative
o Pattern C. 

.5. ROC analyses 

Discrimination indices were determined based on receiver operator
urve analyses in R statistical software. At each threshold, within-group
MI values were used to determine whether network topology accu-

ately identified FM or HC group membership. Threshold values were
etermined based on the value that maximizes the distance to the iden-
ity line ( Youden, 1950 ). Sensitivity, specificity, and accuracy values
ere also calculated from this threshold value. 

.6. Whole brain regression analyses 

To explore the relationship between traditional intrinsic resting state
etworks (RSN) and our network measures, we conducted whole brain
egression analyses correlating NMI with changes in functional connec-
ivity of resting state networks shown to be altered in FM patients. RSN
eeds were generated from independent component analysis using the
IFT toolbar ( Calhoun et al., 2004 ). From the estimated components,

alience (SLN) and default mode network (DMN) were identified by
patial correlation with RSN templates ( Beckmann et al., 2005 ). Bi-
ary masks were generated for each RSN and used for seed-to-whole
rain functional connectivity analyses in the Conn toolbox. To deter-
ine changes in RSN connectivity that were associated with NMI in
M, individual beta-maps were entered into a second-level whole brain
egression analysis with NMI (within-group NMI:FM-FM) in SPM12. Age
nd motion (e.g. meanFD and maxFD) were included as nuisance regres-
ors. 

.7. Statistical analysis 

Independent t-tests were used to test group differences in motion,
linical variables and modularity values between groups in R statisti-
al software. We tested for group differences in within-group NMI val-
es using permutation tests with age and motion (e.g. meanFD and
axFD) as regressors of no interests. Permutation test significance was
etermined by the number of occurrences the 10,000 random permuted
roup differences in NMI were more extreme than the observed dif-
erence. Permutated p -values were corrected for multiple comparisons
cross thresholds, based on false discovery rate (FDR) corrected p -value
 0.05. Between-group NMI values were calculated based on the mean
f the NMI values associated with the comparison of each FM patient
o each HC. Paired-t-tests were conducted to determine whether the
ithin-group NMI were significantly different from the between group
MI. Results were deemed significant at p < 0.05. For the phi analyses,
e ran permutation tests to determine whether the observed within-
roup differences were different from 10,000 random permutations. Age
nd motion were included as regressors of no interest. Permutation test
ignificance were determined by the number of times the observed group
ifference was more extreme than the permutated difference. To correct
or multiple comparisons, across 264 nodes in the phi analysis, results
ere deemed significant at a false discovery rate corrected p -value <
.05. Results of whole brain regression analyses were deemed significant
ased on a FDR cluster level corrected p -value < 0.05, derived from a
oxel-wise uncorrected p -value < 0.001. Post-hoc correlations were per-
ormed between functional connectivity values and NMI (within: FM-
M) using R statistical software ( p < 0.05). 

. Results 

.1. Intrinsic network architecture is altered in chronic pain patients 

We first determined whether there were differences in network archi-
ecture between FM patients and HC. We compared the organization of
rain networks both within group (FM to FM and HC to HC) and between
roups (FM to HC). We found that within the FM group, the mean NMI
etween each pair of FM patients was lower than between pairs of HCs,
uggesting that the organization of functional networks is more variable
n FM. HCs, on the other hand, had relatively stable network configu-
ations (high pairwise NMI). The within group NMI was significantly
ifferent between FM and HCs and this remained true across thresholds
for tau = 0.4, permutation test P value < 0.0001; Fig. 2 a, Supplemental
ig. 2). Next, we compared network similarity across groups. We found
hat FM patients have significantly lower between-group NMI relative
o the within-group FM NMI measure ( paired t-test, t(37) = 19.916, p <
.2 × 10 − 16 ) , suggesting that FM network organization is even less sim-
lar to HC . There were no differences in the average number of commu-
ities and modularity between FM and HC ( Fig. 2 b and c). Motion was
ssessed through mean framewise displacement for the entire length of
he scan for each subject. While meanFD was significantly different be-
ween FM and HC, there were no significant correlations between NMI
nd motion suggesting that motion does not contribute to the variability
f subject networks (NMI). Further, group differences in NMI remained
hen meanFD and maxFD were included as nuisance covariates (Sup-
lemental Fig. 2). 

Next, we tested if these results replicated in a separate population of
M patients and HCs. In our replication cohort, we again found that FM
atients had lower within- and between-group NMI compared to HCs
within-group NMI - permutation test P value < 0.0001; between group
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Fig. 2. Comparison of functional networks between FM and HC. Lower normalized mutual information (NMI) indicated that network organization was more 
variable among FM patients (red) relative to within HCs (blue) Further, FM and HC networks were even less similar to each other (green) (a). There were no 
differences in the number of communities (b) or modularity (c). These results were consistent in the replication group (d-f). ( ∗ ∗ ∗ designates significance based on 
permutation test – p < 0.001; ### designates significance based on paired t -test - p < 0.001; n.s. not significant). 
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Fig. 3. Within-group NMI reliably discriminates FM patients from HC. (a) 
ROC curves for within group NMI at tau = 0.40 for the discovery (AUC = 91%) 
and replication, (AUC = 93%) datasets. (b) NMI could discriminate networks 
FM patients from HC between tau thresholds of 0.1 and 0.7. (purple - discovery; 
MI - paired t -test t(31) = 12.796, p < 6.567 × 10 − 14 ; ( Fig. 2 c–e, Supple-
ental Fig. 2). In short, chronic pain patients have lower within- and

etween-group NMI compared to HCs, suggesting that their network ar-
hitecture is more variable and different. The lack of group difference in
oth modularity and number of communities further implies that while
he strength of connections within relative to between communities are
imilar, the nodes that make up the communities differ between groups.

.2. Sensitivity and specificity of NMI identifies FM networks 

To investigate whether global network structure can be used to iden-
ify FM networks, we measured whether NMI can accurately discrimi-
ate networks of FM patients and HCs. Receiver operating curve (ROC)
nalyses showed that within-group NMI successfully identified patients
nd controls across multiple thresholds, with an average ( ± SD) accuracy
f 85 ± 13.9 and 86 ± 10, and area under the curve (AUC) of 87 ± 10.8
nd 86 ± 12.8, for the discovery and replication datasets, respectively
 Fig. 3 a). Across thresholds up to 70% agreement (tau = 0.70), within-
roup NMI accurately identified FM patients from controls with an av-
rage 88% sensitivity and 94% specificity in the discovery dataset, and
verage 79% sensitivity and 91% specificity in the replication dataset
 Fig. 3 b). In both datasets the accuracy, sensitivity, specificity and AUC
ecreased as tau increased over 0.7. 

.3. Changes in resting state network connectivity are associated with 

ormalized mutual information 

To explore the relationship between intrinsic network connectivity
nd NMI in FM, we conducted whole brain regression analyses cor-
elating resting state network connectivity with NMI. Functional con-
ectivity between the salience (SLN) and default mode (DMN) net-
orks were associated with within group NMI (FM-FM). Specifically,
e found salience connectivity between the posterior and anterior cin-
ulate/subcallosal gyrus, cuneus, middle temporal gyrus and angular
yrus were negatively associated with NMI ( Fig. 4 a). Functional con-
ectivity between the salience network and the anterior cingulate cor-
ex (ACC) suggests stronger within salience network connectivity is as-
 orange - replication; solid line - sensitivity; dashed line - specificity). 
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Fig. 4. Intrinsic resting state network func- 

tional connectivity is associated with NMI. 

(a) Salience network (SLN) connectivity be- 
tween the posterior cingulate cortex (PCC), 
mPFC/ACC, cuneus, middle temporal gyrus 
and angular gyrus were negatively associated 
with NMI. (b)Within the FM group, FM net- 
works that were less similar have stronger func- 
tional connectivity. (c and d) Group consensus 
networks were constructed from subject net- 
works generated at tau of 0.40 in the discovery 
and replication dataset. Resting state networks 
spanned multiple communities. Moreover, the 
community assignment of nodes within a RSN 

was different across FM and HC groups. The 
composition of communities 1 (visual), 2 (de- 
fault mode and frontoparietal), and 3 (senso- 
rimotor and attention) were consistent among 
FM and HC networks across both datasets. 
Community 4 was the smallest community with 
respect to the number of nodes and included 
nodes from different RSN between datasets 
and groups suggesting community organization 
may be different in FM. (Community 1 – red; 
Community 2 – yellow; Community 3 – green; 
Community 4 – blue). 
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1  
ociated with lower NMI. As the posterior cingulate cortex (PCC) and
ngular gyrus are part of the default mode network, these results sug-
est that functional connectivity between the salience network and de-
ault mode network is also associated with FM networks that were less
imilar among the group. Of note, we also found that DMN functional
onnectivity between the insula cortex, lingual, inferior frontal, supra-
arginal, and precentral gyri is negatively associated with NMI in FM

Supplemental Fig. 4). 

.4. Group consensus analyses reveals community structure 

To visualize the community structure of FM patients and HC we gen-
rated consensus networks based on 50% agreement (tau = 0.50) within
ach group separately. We chose 50% as the agreement threshold be-
ause the number of communities between patient and control consen-
us networks was consistent (Supplemental Fig. 5). To examine how
 n  
odes within resting state networks (RSNs) spread across communities,
e quantified the percent of nodes in each community for each resting

tate network ( Fig. 4 c and d). Nodes in the visual network (VIS) and
efault mode network (DMN) were found predominately (i.e. at least
0% of the nodes) in one community for both FM and HC networks re-
pectively. In contrast, sensorimotor (SMN) nodes were split between
ommunities 3 (66%) and 4 (26%) in the consensus HC network, yet
nly in community 3 in the FM network from the discovery dataset.
rontoparietal, salience and subcortical nodes also differed in how they
ere distributed across multiple communities between FM and HC. 

To determine the composition of each community, we quantified the
ercent of nodes in each resting state network, within each community
Supplemental Fig. 5). The composition of communities 1, 2, and 3 were
onsistent among patients and controls across both datasets. Community
 consisted of nodes from the visual and cerebellar networks, commu-
ity 2 consisted of nodes from the DMN, and community 3 comprised of
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Fig. 5. Phi analysis identifies variable nodes in brain networks of FM patients. (a) Lower Phi values were observed for nodes across functional networks in 
FM patients compared to HC. 118 (44.7%) and 121 (45.8%) out of 264 nodes had significantly lower phi value among FM patients in the discovery and replication 
dataset, respectively. (b) Together, 47 (17.8%) nodes have significantly lower phi values in chronic pain patients across both datasets. Node color based on community 
assignment from consensus network of FM patients. (Community 1 - red; Community 2 - yellow; Community 3 - green; Community 4 – blue). 
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ensorimotor, cingulo-opercular, subcortical, dorsal and ventral atten-
ion network nodes in FM and HC in both datasets. Community 4, the
mallest community, differed with respect to the number and compo-
ition of nodes which varied between datasets and groups. In the dis-
overy dataset, 48% of the nodes in community 4 were affiliated with
he frontoparietal network in the FM consensus network, whereas 45%
f the nodes in community 4 of the HC network corresponded with the
ensorimotor network. In the replication dataset, 32% of the nodes in
ommunity 4 in the FM consensus network consisted of frontoparietal
etwork nodes, consistent with the discovery dataset. However, salience
etwork nodes in both FM and HC consensus networks made up 41%
nd 50% of the nodes in community 4, respectively. Overall, these data
upport the notion that nodes within each resting state network differ
n community assignment across FM and HC groups. 

.5. Chronic pain patients have nodes that are more variable in their 

ommunity assignment 

Differences in consensus networks suggest that communities consist
f nodes from multiple resting state networks which may reveal differ-
nces in intrinsic resting state network connectivity. Moreover, the or-
anization of nodes into different communities within the networks of
M patients compared to HCs may reflect differences in network archi-
ecture in chronic pain and be associated with patients’ clinical pain in-
ensity. We examined which nodes are associated with differences in the
omposition of communities between FM and HC. Pearson’s phi coeffi-
ient (phi), quantifies the pairwise similarity of node community assign-
ents between two networks from a binary vector that defines whether

wo nodes are within the same community (1) or not (0) ( Alexander-
loch et al., 2012 ; Lerman-Sinkoff and Barch, 2016 ) ( Fig. 1 c). Higher
hi values indicate a node is consistently a member of the same commu-
ity across individuals within the FM or HC group. We found that many
rain regions significantly differed in their community assignment be-
ween groups, having lower Phi values among FM patients compared
o HC. Specifically, 118 (44.7%) and 121 (45.8%) nodes had a signif-
cantly lower phi value among FM patients in the discovery and repli-
ation dataset respectively (permutation test; FDR-corrected p < 0.05),
 Fig. 5 a). The remaining nodes were not statistically different in their phi
alues between FM patients and HCs. Together, 47 (17.8%) of the 264
odes had consistently lower phi in FM individuals across the both dis-
overy and replication datasets, suggesting that they were significantly
ore variable among FM patients ( Fig. 5 b). 

.6. Intrinsic functional network structure differs between patients with 

arying degrees of clinical pain 

While nodes appear more variable among FM networks, we were
articularly interested in identifying whether the variability of commu-
ity structure in FM is associated with clinical pain. To examine this
ossibility, FM networks from both datasets were combined and then
plit into tertiles ( n = 23 per group) based on clinical pain ratings (Vi-
ual analog scale from 0 = “no pain ” to 100 = “ worst pain imaginable ”),
reating a low (31.04 ± 12.92), medium (58.48 ± 5.99) and high pain
76.87 ± 7.32) group . High pain patients had significantly lower within-
roup NMI compared to low pain patients (tau = 0.40, permutation test,
 = 0.0142), suggesting differences in community structure between pa-
ients with low and high pain ( Fig. 6 a). There were no differences in
ithin-group NMI between low and medium pain, or medium and high
ain patients (low versus medium: permutation test P value = 0.3765;
edium versus high: permutation test P value = 0.0977). While examin-

ng the medium pain group could help in identifying network signatures,
ere our subsequent analyses focused on the extreme cases of clinical
ain intensity, among FM patients with low and high pain. 

To explore the relationship between clinical pain and the variability
f community structure in FM, we identified which nodes may be con-
ributing to the differences in network structure between low and high
ain patients ( Fig. 6 b). Phi test revealed forty-three nodes that were sig-
ificantly different in their community assignments between low and
igh pain patients (permutation test; FDR-corrected p < 0.05; Fig. 6 b).
luster analysis showed that these nodes form a two-cluster solution
hat differ between low and high pain cohorts further suggesting the
ariability of nodal community assignment is associated with pain in-
ensity among FM patients. (Supplemental Fig. 6). Twelve of the forty-
hree nodes were stable in their community assignment among high pain
atients (i.e. higher within-group phi values among high pain patients).
hese nodes were associated with the default mode, frontoparietal and
alience networks ( Fig. 6 c). The remaining thirty-one nodes were stable
n their community assignment among low pain patients and associated
ith the sensorimotor, cingulo-opercular, visual, attention, frontopari-

tal and salience resting state networks ( Fig. 6 d). 
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Fig. 6. Network structure tracks with level of clinical pain. FM patients from both the discovery and replication dataset were combined and then split into 
tertiles based on the degree of spontaneous pain: low pain (31.04 ± 12.92), medium pain (58.48 ± 5.99) and high pain (76.87 ± 7.32). (a) Differences in network 
structure were observed between patients, such that high pain patients had lower within-group NMI compared to patients with low clinical pain. (b) Forty-three 
nodes significantly differed in their community assignment between patients with low and high pain. (c) Twelve out of forty-three nodes were more stable among 
patients with high pain compared to low. These nodes consisted of primarily DMN (red), SLN (black), FPN (yellow) and Uncertain (white) nodes. (d) Thirty-one of 
the forty-three nodes were more stable among low pain patients and consisted of nodes across all RSNs. ( ∗ designates significance based on permutation test – p < 

0.05; DMN-default mode network; SLN-salience network; FPN-frontoparietal network). 
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.7. Community ratio reveals differences of node community assignment 

cross chronic pain intensity 

To examine how a node may differ in community membership be-
ween the two groups, we used the community ratio to quantify node
ommunity assignment between low and high pain networks. For the
odes that significantly differed in their community assignment between
ow and high pain networks, we quantified how the variation in com-
unity assignment differed between low and high pain networks by

alculating the frequency distribution of node community assignment
or each group. 

We measured the alpha ratio for nodes with greater phi in high pain
etworks. These nodes were differentially assigned to community 1 and
 (Pattern A) versus community 2 (Pattern B). For example, the right
ngular gyrus was commonly found between communities 1 and 3 (as
pposed to community 2) and had a higher Alpha ratio among high pain
etworks relative to low pain networks. The right anterior insula, in
ontrast, was primarily found in community 2 in networks of high pain
atients and had a lower Alpha ratio ( Fig. 7 a and c). We also calculated
he Beta ratio which assessed how nodes stable in low pain differed in
ommunity assignment between community 3 (Pattern C) or community
 (Pattern D). The left postcentral gyrus was assigned to community 3
cross low pain networks. As a result, the Beta ratio is lower in low pain
ompared to the high pain group. The right medial orbital frontal gyrus
s found in community 1 among low pain networks compared to high
ain networks where they are found more commonly in community 3.
s a result, the Beta ratio for this node is lower in the high pain group
ompared to the low pain group ( Fig. 7 b and d). 

Lastly, we investigated the community ratio among nodes using the
ommunity labels based on the group consensus analysis and how they
iffer between low and high pain networks. Differences in the Alpha
atio revealed that nodes in the middle temporal gyrus, superior frontal
yrus, mid frontal gyrus, and angular gyrus, affiliated with the default
ode network, are stable in high pain and are found in communities

ssociated with visual and sensorimotor resting state networks. The two
odes affiliated with the salience network (i.e. the anterior insula and
rontal precentral) were found in the default mode network communities
mong high pain patients ( Fig. 8 a and c). Of note, the medial thalamus
ifferences between low and high pain networks reflect nodes assigned
o community 2 or 3 between low and high pain networks. 

The Beta ratio highlights differences in visual and sensorimotor net-
ork community assignment associated with varying pain intensity
 Fig. 8 b and d). Among high pain networks, the medial orbital frontal
yrus, superior temporal gyrus, supplemental motor area/paracentral
obule, dorsal anterior cingulate nodes have a lower Beta ratio indicating
hese nodes were assigned to the sensorimotor network in high pain. In
ow pain networks, these nodes varied between visual and sensorimotor
ommunities and as a result the beta ratio was closer to 1. Interestingly,
 third group of nodes that include the precentral gyrus, middle insula,
uperior temporal gyrus frontal middle orbital gyrus and visual regions:
ingual, inferior temporal and inferior occipital gyrus, also have a higher
eta ratio in high pain compared to low pain. These nodes appeared to
e in the visual community in high pain networks compared to low pain
etworks. Together these results demonstrate that the community ratio
uantifies nodal differences in community composition associated with
linical pain intensity in FM. 

. Discussion 

The main finding of this investigation was that NMI, a measure of
airwise similarity based on community membership, is different be-
ween chronic pain patients compared to HC. FM patients had signifi-
antly lower within- and between-group NMI, suggesting that the com-
osition of communities is more variable amongst FM patients and sig-
ificantly different from HCs. Furthermore, NMI accurately predicted
hether a network came from an FM patient or HC with 85% accu-

acy. We found that the differences in community structure were at-
ributed to changes in node allegiance across networks in chronic pain
atients. In short, certain brain regions were more variable or less pre-
ictable in their community assignment among chronic pain patients.
ext, we determined if these changes in community structure were re-

ated to clinical pain levels. Patients with high clinical pain had lower
MI compared to low pain chronic pain patients. These differences in
etwork topology were attributed to intrinsic composition of functional
ommunities across networks and associated with varying levels of clin-
cal pain ( Fig. 8 ). A significant strength of this study is that we replicated
he differences in community structure in a novel cohort of FM and HC
articipants. 

Through expanding the scope of functional connectivity analyses to
hole brain networks, this work makes three crucial contributions to

he field of pain and neuroimaging: First, connectome-based measures
f the brain may improve diagnosis of conditions with underlying brain
athology or prediction of subgroups or states within a clinical popu-
ation ( Tracey et al., 2019 ). We show that NMI reliably identified net-
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Fig. 7. Community Ratio reveals the dis- 

tribution of node community assignments 

across low and high pain. The relative fre- 
quency in which nodes were assigned to dif- 
ferent communities displayed distinct patterns 
of community distribution across FM networks 
of low and high pain patients. (a) Among high 
pain networks, Pattern A consisted of nodes 
typically assigned to communities 1 or 3. Pat- 
tern B among high pain patients were nodes 
found in community 2. (b) Among low pain net- 
works, Pattern C consisted of nodes assigned 
to community 3 and Pattern D consisted of 
nodes assigned to community 1. The commu- 
nity ratio of these nodes quantifies the dis- 
tribution of nodes across communities within 
a network. (c) In Pattern A nodes have a 
higher Alpha ratio, where Pattern B nodes have 
a lower alpha ratio. (d) The Beta ratio was 
lower for Pattern C nodes and higher for Pat- 
tern D nodes among low pain patients. (or- 
ange – low pain patients; blue – high pain pa- 
tients. DMN-default mode network; VIS-Visual 
network; SMN-sensorimotor network.) 
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orks within FM patients from healthy controls in both our discovery
nd replication datasets. Differences in community structure using NMI
ave been previously reported in neurologic (e.g. epilepsy), psychiatric
e.g. schizophrenia, major depression disorder), and chronic pain (e.g.
hronic low back pain) suggesting that NMI may be a neural marker of
nderlying brain pathology. ( Alexander-Bloch et al., 2012 ; Chavez et al.,
010 ; He et al., 2018 ; Mansour et al., 2016 ). Measures of global network
tructure, like NMI, may be useful in clinical settings to identify different
ubgroups of chronic pain conditions (i.e. neuropathic vs. nociplastic). 

It is important to note that prior to application of network measures
n a clinical setting, we understand how these measures relate to the
nderlying pathophysiology of these conditions, independently. In FM,
alience nodes more stable in their community assignment in high pain
etworks had a lower alpha ratio, indicating these nodes are commonly
ound in community 2 with other DMN nodes. Moreover, these nodes
verlap with changes in DMN connectivity negatively associated with
MI, linking the relationship between differences in functional connec-
ivity and network structure to clinical pain intensity in FM (Supplemen-
al Fig. 4) ( Baliki et al., 2008 , 2014 ; Napadow et al., 2012 , 2010 ). The
ommunity ratio also revealed that DMN nodes stable in high pain have
 higher alpha ratio and are found in community 1 and 3. These regions
ay have increased connectivity to sensory or attention communities

nd decreased connectivity to the DMN in networks of high pain FM
atients ( Mansour et al., 2016 ). 

Interestingly, the nodes with higher phi values in low pain differ
argely between sensory communities (e.g. visual and sensorimotor)
hen comparing networks of low and high pain. The insula, superior

emporal gyrus and occipital brain regions, have a higher beta ratio in
igh pain compared to low pain, suggesting these nodes were typically
ound in community 1 and may be more connected to visual regions in
igh pain networks. The beta ratio for the precentral and postcentral
odes was also higher in high pain compared to low pain, but largely
eflects the increase variability in community assignment among high
ain networks. The dorsal ACC, medial orbitofrontal cortex, superior
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Fig. 8. Network reorganization among FM. FM patients have variable community structure compared to HC. This variability in network structure is attributed to 
differences in node community assignment across FM networks with varying degrees of clinical pain, as changes in the composition of communities are associated 
with clinical pain. The community ratio reveals how nodes are assigned to different communities between low pain and high pain groups for the nodes stable across 
(a and c) high pain networks and (b and d) low pain networks. (a) The alpha ratio measures whether nodes are assigned to the DMN (i.e. lower alpha ratio) or sensory 
communities (i.e. higher alpha ratio) for nodes stable among high pain networks. (b) The beta ratio measures whether nodes are assigned to visual (i.e. higher beta 
ratio) or sensorimotor (i.e. lower beta ratio) for nodes stable across low pain networks. (c) Differences in the alpha ratio show that DMN nodes are found in visual 
and sensorimotor communities while SLN nodes were found in the DMN communities among high pain networks. (d) SMN nodes have a higher beta ratio in high 
pain relative to low pain indicating they are assigned to the visual community more in high pain networks relative to low pain networks. (Orange-yellow color bar 
for nodes stable among high pain networks is based on alpha ratio within the group. Blue-green color bar for nodes stable among low pain networks is based on beta 
ratio within the group. DMN-default mode network; VIS-visual network; SLN-salience network; SMN-sensorimotor network.). 
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edial frontal gyrus and supplementary motor area had a lower beta
atio among high pain patients compared to low pain patients. Of note,
hese nodes were found in community 3 in high pain networks compared
o being more variable or community 1 in low pain patients ( Fig. 8 ).
hese brain regions are involved in modulation of pain via placebo anal-
esia and the descending inhibitory pathways. Clinical pain may arise
rom disrupted descending pain modulatory activity in chronic pain pa-
ients ( Bingel et al., 2006 ; Bushnell et al., 2013 ; Jensen et al., 2012 ;
chrepf et al., 2016 ; Watson et al., 2009 ). Whether the differences in
he assignment of these nodes into their respective communities reflect
ltered pro- or antinociceptive mechanisms among chronic pain condi-
ions is a point worth exploration in future studies. 

Second, analyses of the intrinsic mesoscale organization of the brain
hrough communities explore changes in resting state network connec-
ivity that are associated with clinical pain intensity. Functional con-
ectivity between the salience and default mode network is negatively
ssociated with NMI such that stronger connectivity was associated with
etworks that are more variable in network structure in FM. These find-
ngs were consistent whether we used the salience or default mode net-
ork as regions of interest indicating changes in the intrinsic resting

tate functional connectivity may contribute to global properties of the
etwork via changes in the community composition within the network
 Bertolero et al., 2015 ). In our analyses we show that communities may
onsist of nodes from one resting state network (e.g. community 1: vi-
ual) or multiple resting state networks (community 2 and 3). Observ-
ng the network organization of the brain within communities may re-
eal intrinsic functional connectivity between resting state networks.
he present study shows that brain regions typically involved in pain
rocessing are differentially assigned to communities between patients
ith varying levels of clinical pain. 

Third, the current study shows that intrinsic functional brain net-
orks are reorganized in FM. It is important to note that differences in

he organization of networks are not completely random, but instead
here are specific changes in connectivity or network organization, con-
istent with previous studies ( Kaplan et al., 2019 ; Mansour et al., 2016 ).
e show that the variations in community structure in FM is associated
ith clinical pain in FM. Higher clinical pain is associated with lower
MI in FM patients notably contributing to the within group FM hav-

ng lower NMI. A second factor potentially contributing to lower NMI
n FM patients may be that there are multiple ways of engendering pain
n FM. Patients may have increased connectivity in pronociceptive re-
ions, insufficient anti-nociceptive activity, or a combination of both
 Ichesco et al., 2014 ; Jensen et al., 2009 ). Together these differences
ould increase variability in the FM group and lower within FM NMI
utcomes. The lack of difference in modularity and number of commu-
ities suggest that the composition of communities contributes to the
ifference in network architecture. 

Fibromyalgia may be an example of maladaptive reorganization of
rain networks in which changes in the network composition are a result
f, or response to, persistent pain among patients ( Achard et al., 2012 ;
uner and Flor, 2017 ). In both the discovery and replication dataset,
ur phi analyses revealed only nodes that were more variable in the
ommunity assignment in FM, relative HC. The nodes that are different
n their community assignment across both datasets were brain regions
ffiliated with classic pain and sensory processing pathways. How and
hen these changes occur are still unknown and require both longitu-
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inal studies to understand the transition from acute to chronic pain,
long with innovative network analyses to understand how networks
hange over time, or remain the same ( Vachon-Presseau et al., 2018 ). 

The current study has a number of limitations. The cross-sectional
esign limits our ability to directly test whether the reorganization of
he subject networks causes pain or whether pain causes network reorga-
ization. Longitudinal studies will provide the opportunity to determine
hether intrinsic network organization contributes to state or trait mea-

ures of chronic nociplastic pain. Secondly, previous studies have shown
hat patients with Major Depression Disorder have altered intrinsic net-
ork architecture ( He et al., 2018 ). Additionally, many patients with
M have multiple comorbid clinical diagnoses including anxiety and
epression ( Arnold et al., 2006 ; Hooten, 2016 ). While the differences in
etwork architecture in the current study are not affected by comorbid
epression and anxiety, these symptoms may contribute to the intrin-
ic reorganization of the brain and could be explored further in future
tudies. 

. Conclusion 

Intrinsic functional brain networks are more variable among FM pa-
ients compared to HC. Furthermore, changes in community composi-
ion of intrinsic brain networks varies between patients with high and
ow levels of clinical pain. This work suggests that mesoscale community
tructure may be of use as a diagnostic tool for patients with FM. 
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