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Migraine: disease characterisation, biomarkers, and 
precision medicine
Messoud Ashina, Gisela M Terwindt, Mohammad Al-Mahdi Al-Karagholi, Irene de Boer, Mi Ji Lee, Debbie L Hay, Laura H Schulte, 
Nouchine Hadjikhani, Alexandra J Sinclair, Håkan Ashina, Todd J Schwedt, Peter J Goadsby

Migraine is a disabling neurological disorder, diagnosis of which is based on clinical criteria. A shortcoming of these 
criteria is that they do not fully capture the heterogeneity of migraine, including the underlying genetic and 
neurobiological factors. This complexity has generated momentum for biomarker research to improve disease 
characterisation and identify novel drug targets. In this Series paper, we present the progress that has been made in 
the search for biomarkers of migraine within genetics, provocation modelling, biochemistry, and neuroimaging 
research. Additionally, we outline challenges and future directions for each biomarker modality. We also discuss the 
advances made in combining and integrating data from multiple biomarker modalities. These efforts contribute to 
developing precision medicine that can be applied to future patients with migraine.

Introduction
Migraine is a highly prevalent neurological disorder, 
listed as the second leading cause of years lived with 
disability worldwide.1 The pathogenesis of migraine has 
a strong genetic component and involves activation of 
trigeminovascular pain pathways.2–5 Migraine is defined 
solely by clinical criteria, which has fuelled research 
efforts to establish migraine-specific biomarkers for 
precision medicine approaches.5,6 Advances in genetics, 
provocation models, biochemistry, and neuroimaging 
hold great promise and have improved our under-
standing of migraine pathogenesis. In this Series paper, 
we first evaluate the progress that has been made in 
the search for migraine-specific biomarkers. Second, 
we discuss the use of integrating data from multiple 
biomarker modalities to more accurately assess distinct 
and unique features of migraine. Finally, we highlight 
challenges with the current biomarker approaches and 
provide recommendations to improve research into 
biomarkers of migraine.

Classification and characterisation of migraine
The diagnosis of migraine is based on clinical criteria 
provided in the third edition of the International 
Classification of Headache Disorders (ICHD-3).6 Medical 
history is the main component of diagnosis and typical 
clinical features include recurrent headache attacks of 
unilateral location, pulsating quality, moderate or severe 
intensity, aggravation by routine physical activity, and 
association with nausea, vomiting, photophobia, and 
phonophobia.6 Although migraine pain often lateralises 
to one side of the head, approxi mately 40% of patients 
report migraine pain of bilateral location.7 However, 
migraine is a heterogeneous disorder with multiple 
subphenotypes;6 therefore, the ICHD-3 has defined 
clinical criteria for migraine without aura, migraine with 
aura, and rarer subphenotypes (panel 1).6 Individuals 
with migraine most often have a normal physical 
examination, with no findings suggestive of another 
underlying cause for headache. Neuroimaging is there-
fore rarely needed in the diagnostic investigations.8

Aura occurs in approximately one-third of individuals 
with migraine and is characterised by transient focal 
neurological symptoms of recurrent nature that develop 
gradually over 5–60 min.6 Visual symptoms (eg, scotoma 
or fortification spectra) are the most frequent clinical 
manifestation of aura, occurring in more than 90% of 
individuals with migraine with aura.6 Less common 
are sensory symptoms (ie, paraesthesia) and speech or 
language disturbances, both of which are usually present 
in conjunction with visual aura symptoms.6 Although the 
aura phase typically occurs before the onset of headache, 
some data suggest that aura symptoms are relatively 
frequent during or in the absence of headache as well.9 
Another important aspect of migraine classification is 
the diagnosis of chronic migraine.6 The ICHD-3 defines 
chronic migraine as headache occurring on 15 or more 
days per month, of which at least 8 days fulfil the clinical 
criteria for migraine with or without aura.6
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“genetic”, “provocation”, “human models”, “blood 
biomarkers”, “serum”, “brain”, “cortical changes”, 
“imaging”, “data integration”, “biomarker”, “CGRP”, 
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publications from the past 5 years but did not exclude 
other publications that were commonly cited and highly 
regarded. We also searched the reference lists of articles 
identified by this search strategy and selected those we 
judged relevant. No language restrictions were used in the 
search strategy.
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As migraine is increasingly being recognised as a 
heterogeneous disorder, the ICHD-3 has provided 
clinical criteria for probable migraine, which allows for a 
diagnosis pending confirmation during the early clinical 
evaluation.6

Genetic biomarkers
Migraine often clusters in families, suggesting a strong 
genetic component to its pathogenesis.2 However, 
identifying the relevant genes remains a challenge. 
Population-based twin and family studies have shown 
that migraine is a complex neurological disorder, with 
its features probably arising from gene–gene and gene–
environment interactions, but also other unknown 
factors.2,10 A genome-wide association meta-analysis 
identified 38 genomic loci that affect migraine risk.10 This 
meta-analysis also found an enrichment of migraine risk 
variants in genes expressed in tissues with vascular 
and smooth muscle cell components. This finding is 
consistent with previous reports of a shared genetic basis 
of migraine with ischaemic stroke and coronary heart 
disease.11,12 A summary analysis confirmed the presence 

of cardiovascular enrichment in individuals with 
migraine, although analysis of chromatin data yielded 
evidence in support of neuronal enrichment as well.13 
Based on these findings, future multiple-tissue analyses 
should emphasise representation of the highest possible 
number of tissues and cell types.

Genetic studies have also provided mechanistic 
insights to improve understanding of migraine sub-
phenotypes.14 In an analysis of 1589 families with 
migraine, high polygenic load was associated with 
increased migraine severity, earlier age of onset, and 
migraine with aura.15 Of note, family history of migraine 
alone might suffice to make similar estimations, since 
increased prevalence of migraine in the family has been 
associated with an earlier age of onset, migraine with 
aura, and an increased number of medication days.16

Evaluation of the epigenetic contribution in migraine 
pathogenesis is also important. A genome-wide associ-
ation analysis has quantified patterns of DNA methyla-
tion in migraine and found 62 independent differen tially 
methylated regions.17 However, this study did not 
distinguish between migraine with and without aura. 
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Panel 1: ICHD-3 diagnostic criteria for migraine

Migraine without aura
• Criterion A: at least five attacks fulfilling criteria B–D
• Criterion B: headache attacks lasting 4–72 h (when 

untreated or unsuccessfully treated)
• Criterion C: headache has at least two of the following 

four characteristics:
• Unilateral location
• Pulsating quality
• Moderate or severe pain intensity
• Aggravation by or causing avoidance of routine physical 

activity (eg, walking or climbing stairs)
• Criterion D: during headache, at least one of the following:

• Nausea, vomiting, or both
• Photophobia and phonophobia

• Criterion E: not better accounted for by another ICHD-3 
diagnosis

Migraine with aura
• Criterion A: at least two attacks fulfilling criteria B and C
• Criterion B: one or more of the following fully reversible 

aura symptoms:
• Visual
• Sensory
• Speech or language
• Motor
• Brainstem
• Retinal

• Criterion C: at least three of the following six characteristics:
• At least one aura symptom spreads gradually over ≥5 min
• Two or more aura symptoms occur in succession
• Each individual aura symptom lasts 5–60 min

• At least one aura symptom is unilateral
• At least one aura symptom is positive
• The aura is accompanied, or followed within 60 min, 

by headache
• Criterion D: not better accounted for by another ICHD-3 

diagnosis

Chronic migraine
• Criterion A: headache (migraine or tension type) on ≥15 days 

per month for >3 months, and fulfilling criteria B and C
• Criterion B: occurring in a patient who has had at least 

five attacks fulfilling criteria B–D for migraine without aura, 
or criteria B and C for migraine with aura

• Criterion C: on ≥8 days per month for >3 months, fulfilling 
any of the following:
• Criteria C and D for migraine without aura
• Criteria B and C for migraine with aura
• Believed by the patient to be migraine at onset and 

relieved by a triptan or ergot derivative
• Criterion D: not better accounted for by another ICHD-3 

diagnosis

Probable migraine
• Criterion A: attacks fulfilling all but one of criteria A–D for 

migraine without aura, or all but one of criteria A–C for 
migraine with aura

• Criterion B: not fulfilling ICHD-3 criteria for any other 
headache disorder

• Criterion C: not better accounted for by another ICHD-3 
diagnosis

ICHD-3=International Classification of Headache Disorders, third edition.
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Further studies are needed because research into 
epigenetic contributions in migraine is still in its 
infancy.

Stratification by genetics has offered biomarker advance-
ment in migraine studies and enabled identi fication of 
rare monogenic disorders related to migraine with aura 
(panel 2).2,9,18 These disorders include familial hemiplegic 
migraine, cerebral autosomal dominant arteriopathy with 
subcortical infarcts and leukoencephalopathy, retinal 
vasculopathy with cerebral leukoencephalopathy and sys-
temic manifestations, and familial advanced sleep phase 
syndrome.14 Additionally, concerted efforts to delineate 
additional genes as biomarkers for other rare monogenic 
subtypes of migraine are ongoing.14 However, it remains 
difficult to identify causal genes in common polygenic 
subtypes and to define the mechanisms that increase the 
risk of migraine.

Challenges and future perspectives
The combination of multiple genetic variants with small 
effect sizes and environmental factors has hampered 
mapping of genetic biomarkers for common subtypes of 
migraine. Therefore, future studies are likely to focus on 
examining the association between clinical features and 
possible genetic biomarkers. Additionally, identification 
of genetic risk factors might contribute to developing 
precision medicine approaches to individualise treat ment 
strategies. One proof-of-concept study, published in 2019, 
found an association between high polygenic load and 
improved response to triptans in individuals with 
migraine.19 This study is the first step in genetics-guided 

treatment strategies for migraine in the era of precision 
medicine. Large-scale prospective studies are needed to 
further explore the potential of pharmacogenetics.

Progress made in genetic investigations have enabled 
the identification of approximately 40 loci that inde-
pendently contribute to the biological underpinnings 
of migraine.10 The genetic contribution is, therefore, 
polygenic for common types of migraine, with each 
identified risk variant likely to account for only modest 
effects. However, these risk variants offer novel insights 
that should improve our understanding of signalling 
pathways underlying migraine pathogenesis and enable 
identification of mechanism-based drug targets.

Mendelian randomisation is a novel approach, in 
which genetic variants are used to determine whether an 
observational association between a risk factor and an 
outcome is consistent with a causal effect.20 The benefits 
of mendelian randomisation include a theoretical 
random distribution of genetic variants as genotypes 
are passed on randomly through meiosis. Although 
mendelian randomisation holds great promise, it 
requires a robust association of a genetic variant to the 
risk factor. Additionally, mendelian randomisation relies 
on the assumptions that the genetic variant does not 
affect the outcome through a mechanism independent 
of the risk factor in question and does not influence 
indepen dent factors that confound the risk factor–
outcome relationship. Thus, data should be interpreted 
with caution as mendelian randomisation emerges in 
migraine studies.

Provocation biomarkers
The pathogenesis of migraine is multifaceted, with a 
complex interplay between different molecular signalling 
pathways.5 A key feature of migraine is that various trigger 
factors have been shown to produce migraine attacks 
(figure 1).21 This feature provides a unique opportunity 
to identify signalling pathways that cause migraine 
through human provocation models, wherein endogenous 
signalling molecules or other putative triggers are used to 
induce migraine in humans.21 An important observation 
from human provocation studies is that only individuals 
with migraine develop provoked migraine attacks, whereas 
healthy volunteers develop, at most, a mild headache.21

In principle, human provocation models apply a 
double-blind, crossover design whereby individuals with 
migraine or healthy volunteers are randomly allocated 
to receive a putative trigger molecule or placebo.21 A 
headache diary is used to record headache occurrence, 
characteristics, and accompanying symptoms.21 Notably, 
provoked migraine attacks must fulfil at least one of two 
categories. Category one describes headache with at least 
two of the following clinical features: unilateral location, 
pulsating quality, moderate to severe pain intensity, and 
aggravation or avoidance of routine physical activity. 
Additionally, headache must be accompanied by at least 
one of the following symptoms: nausea, vomiting, or 

Panel 2: Genetics in migraine

Key facts
• Based on studies with twins, the heritability of migraine 

has been estimated as 42%2

• A genome-wide association meta-analysis identified 
38 genomic loci that affect migraine risk9

• The relative risk of migraine without aura is 1·9 in first-
degree relatives of probands with migraine without aura18

• The relative risk of migraine with aura is 3·8 in first-
degree relatives of probands with migraine with aura18

Genetic biomarkers for monogenic subtypes of migraine 
or migraine-related syndromes
• Familial hemiplegic migraine

• Type 1 (CACNA1A gene)
• Type 2 (ATP1A2 gene)
• Type 3 (SCN1A gene)

• Cerebral autosomal dominant arteriopathy with 
subcortical infarcts and leukoencephalopathy (NOTCH3 
gene)

• Retinal vasculopathy with cerebral leukoencephalopathy 
and systemic manifestations (TREX1 gene)

• Familial advanced sleep phase syndrome (CSNK1D gene)
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photophobia and phonophobia. Category two describes 
headache that mimics the patient’s usual migraine 
attacks and is treated with a rescue medication.

In 1993, the first migraine provocation study showed 
that individuals with migraine develop more severe 
headache than healthy volunteers following intra venous 
administration of the nitric oxide donor, glyceryl 
trinitrate.22 Since then, various putative trigger molecules 
have been tested for their ability to induce migraine, 
including calcitonin gene-related peptide (CGRP), pitu-
itary adenylate cyclase-activating polypeptide (PACAP), 
an adenosine triphosphate-sensitive potassium (KATP) 
channel opener, and a large conductance calcium-
activated potassium (BKCa) channel opener.5,21,23

Intravenous infusion of CGRP or PACAP induces 
migraine attacks in approximately 60% of individuals with 
migraine.24,25 Higher induction rates (≥80%) have been 
observed following administration of glyceryl trinitrate 
and phosphodiesterase 3 and 5 inhibitors.22,26,27 A common 
factor for all trigger molecules is that they mediate 
their intracellular effects through the second messenger 
systems of either cyclic adenosine monophosphate (cAMP) 
or cyclic guanosine monophosphate (cGMP).21 Based on 
these findings, it was hypothesised that downstream 
effects of cAMP and cGMP signalling could involve 
modulation of ion channels, mainly potassium channels.22 
It was subsequently shown that administration of a 
KATP channel opener yielded a migraine induction rate of 
100% in individuals with migraine, whereas the corres-
ponding induction rate was 95% following administration 
of a BKCa channel opener (figure 1).23,28 Administration of a 
KATP channel opener was also found to induce migraine 
aura in 10 (59%) of 17 patients with migraine with aura.29 
A fundamental question raised by these provocation 
studies pertains to the site of action, with some proponents 
in favour of a peripheral origin of migraine, whereas 
others have argued that a central origin is more probable.4,21

Challenges and future perspectives
Human provocation models have provided insight into 
signalling pathways underlying migraine pathogenesis. 
These studies have also contributed to the identification 
and development of drugs that target specific trigger 
molecules. This contribution is most evident with 
the recently (2018–20) approved drugs targeting CGRP 
or its receptor, which have proven effective in acute 
and preventive treatment of migraine.30 Consequently, 
future drug development should, in part, be guided 
by discoveries from human provocation studies. From 
this perspective, two potential drug targets are KATP 
channel blockers and BKCa channel blockers, as opening 
these channels provoked migraine attacks in nearly all 
study participants with migraine.23,28 However, there are 
also limitations to human provocation models.21 For 
example, selective inhibition of nitric oxide synthase 
(NOS) has been suggested as a possible drug target for 
migraine based on two key facts: glyceryl trinitrate 

induces migraine attacks and administration of a 
non-selective NOS inhibitor led to headache relief in 
individuals with migraine.22,31 However, inducible nitric 
oxide inhibition did not abort or prevent migraine 
attacks.32,33

Apart from discovery of drug targets for migraine, 
human provocation models could also be used as a 
biomarker to predict efficacy of mechanism-based 
therapies, such as blockers of CGRP signalling.21 Large-
scale registry studies are needed, in which individuals 
with migraine are initially provoked by intravenous 
infusion of CGRP and subsequently allocated to receive 
treatment with a blocker of CGRP signalling, such as 
monoclonal antibodies against CGRP or its receptor. The 
hypothesis is that individuals with migraine who develop 
provoked migraine attacks following CGRP infusion 
would benefit more from treatment with such drugs than 
would those who did not develop provoked attacks after 
CGRP infusion. This rationale remains speculative and 
rigorous investigations are needed to ascertain whether 
human provocation models can be used to predict the 
treatment response in individuals with migraine.

Blood biomarkers
Research into blood biomarkers of migraine has garnered 
attention over the past 10 years.4 This interest is fuelled 
by the concept that blood biomarkers contribute to the 
understanding of molecular mechanisms underlying 
migraine. Efforts have been made to establish blood 
biomarkers that could predict and monitor treatment 
response in individual patients. Blood biomarker studies 
have investigated a multitude of circulating signalling 

Figure 1: Molecular signalling pathways in migraine
Cell is a vascular smooth muscle cell. Molecular signalling pathways underlying migraine pathogenesis have been 
studied using provocation models, in which putative trigger molecules are used to induce migraine attacks in 
humans. These trigger molecules include CGRP, PACAP, glyceryl trinitrate, cilostazol (PDE3 inhibitor), sildenafil 
(PDE5 inhibitor), and levcromakalim (KATP channel opener). cAMP=cyclic adenosine monophosphate. cGMP=cyclic 
guanosine monophosphate. CGRP=calcitonin gene-related peptide. KATP=adenosine triphosphate-sensitive 
potassium. PACAP=pituitary adenylate cyclase-activating polypeptide. PDE3=phosphodiesterase 3. 
PDE5=phosphodiesterase 5. PKA=protein kinase A. PKG=protein kinase G.
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molecules implicated in migraine pathogenesis.4 Herein, 
we focus our discussion only on blood biomarker studies 
of CGRP and PACAP.

Ictal phase
In 1990, the first study investigated plasma concentra-
tions of CGRP in the external jugular vein during 
spontaneous migraine attacks.34 This study showed 
that CGRP plasma concentrations were elevated in 
individuals with migraine, compared with a control 
population. Subse quently, another study reported that 
ictal (ie, during migraine attacks) plasma concentrations 
of CGRP were also elevated in peripheral blood.35 
However, these findings were not reproduced in a study 
that assessed CGRP plasma concentrations in both 
the external jugular vein and peripheral blood, using 
two different assays.36 Regarding ictal changes of PACAP, 
two studies have reported elevated PACAP-like immuno-
reactivity during spontaneous migraine attacks.37,38

Interictal phase
Measurements of blood biomarkers have been done in 
the interictal phase (ie, between migraine attacks) in 
individuals with both episodic and chronic migraine. 
The available data are highly conflicting, with strikingly 
different findings. Two studies have reported elevated 
interictal plasma concentrations of CGRP in individuals 
with both episodic and chronic migraine, compared with 
healthy participants.39,40 However, these findings were not 
reproduced by another study that found no differences in 
serum CGRP concentrations between individuals with 
chronic migraine, those with episodic migraine, and 
healthy participants.41 In terms of PACAP, two studies 
have found no increases in the interictal phase of 
migraine.38,42

Prediction of treatment response
Two studies have reported higher baseline concen-
trations of CGRP in individuals with migraine who 
subse quently benefited from preventive treatment with 
onabotulinumtoxinA, compared with those who did not 
report therapeutic benefit.43,44 However, this finding was 
not reproduced in another study.41 Therefore, it remains 
unknown whether blood biomarker measurements can 
reliably predict treatment response in individuals with 
migraine.

Challenges and future perspectives
Research into blood biomarkers of migraine is still in its 
infancy, with much work left to be done. The discordant 
findings might be explained by methodological limita-
tions, small sample sizes, and differences in study 
design and assays. Therefore, further investigations are 
needed to optimise data accuracy and reproducibility. An 
absence of standardised methods for data collection 
and sample processing hampers comparisons between 
studies. For example, assays used in CGRP studies are 

extremely variable and not well validated. Suboptimal 
assay valida tion leads to an inability to confidently 
determine whether the assay only detects the blood 
biomarker of interest. For example, ELISA assays are 
used to detect CGRP and PACAP, but these assays could 
also detect close relatives, such as PACAP-38 versus 
PACAP-27 or αCGRP versus βCGRP versus amylin 
(~40% identical sequence to CGRP).45 Most assays (ie, 
radioimmunoassay or ELISA) use antibodies to detect 
peptides but antibodies can often detect both peptide 
fragments and the intact peptide. Hence, it is important 
to describe results as CGRP-like and PACAP-like 
immunoreactivity. Each assay must initially be validated 
through a rigorous process that accounts for sensitivity, 
specificity, interassay and intra-assay variability, and the 
effect of matrix interference (ie, serum or plasma). There 
are many aspects of sample processing that can affect 
results, such as use of plasma or serum, time delays, 
presence of protease inhibitors (which can interfere in 
assays), composition of storage tubes, and freeze–thaw 
cycles. All samples must also fall within the linear range 
of the assay. Researchers should follow appropriate 
guidance documents (eg, Bioanalytical Method Validation 
by the US Food and Drug Administration) and adequately 
report their methods. Commercially available assays 
infrequently have sufficient validation to give confidence 
in the results. Aside from assay validation, there is also a 
need for studies with large samples and appropriate 
control groups. Future studies should consider a shift 
from single-biomarker approaches to a panel of multiple 
biomarkers. Such an approach might show improved 
separation between groups and yield reproducible data 
that are needed for validation of blood-based biomarkers 
for migraine.

Imaging biomarkers
In studies on biomarkers for migraine, MRI has emerged 
as useful technology to identify structural and functional 
changes in individuals with migraine. Alterations in 
functional connectivity have been investigated in both 
the interictal and ictal phase of a migraine attack.46

Structural imaging
Numerous MRI studies have examined differences in 
brain structure of individuals with migraine versus 
healthy controls and differences between migraine with 
and without aura. White matter hyperintensities have been 
extensively studied, but with conflicting results.47 Notably, 
a meta-analysis, published in 2013, of population-based 
studies found an association of white matter hyper inten-
sities with migraine with aura, but not migraine without 
aura, when compared with controls.47 Additionally, when 
directly comparing migraine with aura versus mig raine 
without aura, there was no difference in terms of white 
matter hyperintensities.47 A population-based MRI study, 
published in 2016, found no association between white 
matter hyperintensities and migraine with aura.48

For the US Food and Drug 
Administration Bioanalytical 

Method Validation see 
https://www.fda.gov/files/drugs/
published/Bioanalytical-Method-

Validation-Guidance-for-
Industry.pdf

https://www.fda.gov/files/drugs/published/Bioanalytical-Method-Validation-Guidance-for-Industry.pdf
https://www.fda.gov/files/drugs/published/Bioanalytical-Method-Validation-Guidance-for-Industry.pdf
https://www.fda.gov/files/drugs/published/Bioanalytical-Method-Validation-Guidance-for-Industry.pdf
https://www.fda.gov/files/drugs/published/Bioanalytical-Method-Validation-Guidance-for-Industry.pdf
https://www.fda.gov/files/drugs/published/Bioanalytical-Method-Validation-Guidance-for-Industry.pdf
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Other MRI studies have assessed differences in 
cortical parameters (eg, thickness, volume, surface area) 
and white matter tract integrity. For instance, one 
population-based MRI study assessed differences in 
cortical thickness in women with migraine with aura 
compared with a control population of women without 
migraine and found thicker cortex corresponding to 
visual areas in the migraine group.49 Additionally, 
one diffusion-tensor imaging study found structural 
changes in ascending (ie, trigemino thalamic tract or 
thalamocortical tract) and descending pain pathways 
(ie, periaqueductal grey), which could correspond to 
thalamic changes reported from one multicentre 
study.50,51 Findings from these and other MRI studies are 
important since structural imaging might be used to 
support or supplement migraine diagnosis in patients 
who are difficult to classify on the basis of their clinical 
symptoms alone. This topic was explored in a proof-of-
concept study,52 in which the authors used cortical 
classifiers (ie, thickness, volume, or surface area) to 
determine whether an individual had episodic migraine, 
chronic migraine, or was a healthy control. The cortical 
classifiers were fairly accurate for chronic migraine 
versus healthy controls, with an 86·3% classifier 
accuracy. Larger samples (by comparison with existing 
studies) and new advents in imaging technologies 
will undoubtedly continue to explore the potential 
and feasibility of struc tural imaging-based diagnostic 
classification models. Notably, some studies have 
found differences in brain structure when comparing 
individuals with migraine to those with other headache 
disorders, such as tension-type headache and headache 
attributed to traumatic brain injury.53,54

Functional Imaging
Functional MRI (fMRI) studies have shown that migraine 
is associated with changes in functional connectivity and 
stimulus-induced activation of cerebral circuits related to 
pain processing areas and visual systems.46,55–59 Additionally, 
a combined positron emission tomography and MRI 
study, published in 2019, showed glial activation in pain 
processing areas of migraine with aura patients, compared 
with healthy controls.60 An increasing number of fMRI 
studies have also begun to assess the use of interictal 
functional connectivity data to develop imaging bio markers 
for various purposes, such as diagnostic classification of 
migraine and prediction of migraine attack frequency.61–64 
Similar to structural imaging, these functional imaging 
biomarker models require further refinement and 
validation in multicentre settings.

The preictal phase starts up to 48 h before onset of 
migraine headache. It manifests with clinical features 
(eg, sleep disturbances, food craving) that have been 
linked to hypothalamic activation in both spontaneous 
and glyceryl trinitrate-induced migraine attacks, as 
measured by fMRI.65,66 Regarding the aura phase of 
migraine, imaging studies have shown functional 

changes consistent with cortical spreading depression, 
which is widely believed to be the underlying neuro-
physiological cause of substrate.4,67,68

Functional imaging studies have shown increased 
activity within the dorsal pons during the headache 
phase of spontaneous migraine attacks.69,70 This finding 
was also reproduced following glyceryl trinitrate-induced 
migraine attacks, in which activation of the dorsal pons 
was ipsilateral in those with unilateral migraine attacks 
and bilateral in those with bilateral migraine attacks 
(figure 2).71 Collectively, these data have led to the 
conclusion that dorsal pontine activation is probably an 
imaging biomarker of the headache phase of migraine. 
Notably, increased functional connectivity has also been 
shown between the pons and somatosensory cortex 
during attacks in migraine with aura.72

Challenges and future perspectives
Structural and functional imaging studies have provided 
key insights into migraine pathogenesis and set the stage 
for development of imaging-based biomarkers. Future 
research should focus on refining imaging biomarkers, 
improving their accuracy, determining their sensitivity 
and specificity, and ultimately validating them for clinical 
use. For this purpose, standardised imaging protocols 
should be implemented to ensure high-quality data 
acquisition and enable comparative assessments. To 
provide additional pathophysiological insights, large-
scale imaging studies are needed to assess structural 
and functional differences among different headache 
disorders with overlapping clinical features. Additionally, 
future imaging studies should also investigate whether 
imaging techniques can be used to predict treatment 

Figure 2: Functional cerebral changes in the migraine brain
The preictal phase of migraine has been linked to hypothalamic activation, whereas the headache phase of 
migraine has been associated with increased activity within the dorsal pons. Regarding the aura phase of migraine, 
imaging studies have shown blood flow changes consistent with cortical spreading depression. Several imaging 
studies have also reported interictal cerebral changes in various functional networks (not shown in the figure).
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Preictal symptoms
(eg, sleep disturbance, food 
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responses. An important consideration for fMRI studies 
should involve the use of data-driven analyses and 
validation of results by an independent research group. 
This consideration would enable more robust findings 
and increase the likelihood of reproducibility. Awaiting 
such imaging studies, we must continue to encourage 
more innovative approaches to delineate imaging bio-
markers of migraine.

Integration of biomarker modalities
Integration of biomarker modalities offers a promising 
way to combine data from multiple sources and identify 
novel biomarkers for migraine. Additionally, such 
approaches might advance our understanding of disease 
mechanisms underlying migraine and several studies 
have sought to combine biomarker modalities and 
establish strategic interdisciplinary research collabora-
tions. We herein summarise the results from studies 
that have used at least two of the four biomarker 
modalities.

A combination of genetic and provocation biomarker 
modalities has been used to investigate the effects of 
CGRP in individuals with familial hemiplegic migraine. 
CGRP did not induce migraine attacks in patients with 
familial hemiplegic migraine who had known ion 
channel mutations and in those who did not.73,74 This 
conclusion contrasts with the findings reported in 
common types of migraine.21 Additionally, another 
provocation study found no association between high 
family load (≥2 first-degree relatives with migraine) and 
migraine induction rate following PACAP infusion in 
individuals with migraine without aura.75

Another combination of modalities includes neuro-
imaging and human provocation models. Three studies 
have used magnetic resonance angiography (MRA) to 
record vascular changes following provoked migraine 
attacks in individuals with migraine without aura. The 
first MRA study found that CGRP-induced migraine 
attacks were accompanied by dilation of both the middle 
cerebral artery (MCA) and middle meningeal artery 
(MMA).76 MCA and MMA dilation were only present on 
the pain side in those who developed unilateral migraine 
attacks.76 In another MRA study, MCA and MMA changes 
were recorded after migraine induction using a phos-
phodiesterase 3 inhibitor.77 The authors reported that the 
provoked attacks were associated with an MMA dilation 
on the pain side, but no dilation of the MCA. Additionally, 
one MRA study found that PACAP-induced migraine 
attacks were associated with MMA dilation but not MCA 
dilation;78 the authors found no association between 
provoked attacks and pain location.

Neuroimaging and provocation models have also been 
combined to examine changes in functional connectivity 
before and at onset of provoked migraine attacks. In 
one randomised, double-blind resting state fMRI study, 
abnormal functional connectivity was found in all 
investigated cerebral networks (sensorimotor, salience, 

and default mode) following intravenous infusion of 
PACAP.79 No changes in functional connectivity were 
found after intravenous infusion of vasoactive intestinal 
peptide (active placebo). All of the investigated cerebral 
networks had previously been implicated in processing 
of nociception and emotions.80,81

Conclusions
Biomarker research has already made great contributions 
to our understanding of migraine pathogenesis. Advance-
ments in genetics, provocation models, biochemistry, and 
neuroimaging have shown the potential of biomarker-
driven approaches to diagnosis, treatment, and drug 
discovery. Efforts to combine biomarker modalities have 
improved understanding of the biological complexity 
underlying migraine and its subtypes. Building on this 
foundation, future research should investigate precision 
medicine approaches that improve the diagnosis and 
treatment of migraine.
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