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Abstract

The dorsolateral prefrontal cortex (DLPFC) is an important target for repetitive transcranial magnetic stimulation (rTMS) to reduce
pain. However, the analgesic efficacy of DLPFC-rTMS needs to be optimized, in which the mechanisms of action remain unclear.
Concurrent TMS and electroencephalogram (TMS-EEG) is able to evaluate neuroplastic changes beyond the motor cortex. Using TMS-
EEG, this study was designed to investigate the local and distributed neuroplastic changes associated with DLPFC analgesia. Thirty-
four healthy adults received DLPFC or sham stimulation in a randomized, crossover design. In each session, participants underwent
cold pain and TMS-EEG assessment both before and after 10-Hz rTMS. We provide novel findings that DLPFC analgesia is associated
with a smaller N120 amplitude in the contralateral prefrontal cortex as well as with a larger N120 peak in the ipsilateral insular cortex.
Furthermore, there was a strong negative correlation between N120 changes of these two regions whereby the amplitude changes of
this dyad were associated with increased pain threshold. In addition, DLPFC stimulation enhanced coherence between the prefrontal
and somatosensory cortices oscillating in the gamma frequency. Overall, our data present novel evidence on local and distributed
neuroplastic changes associated with DLPFC analgesia.
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Highlights
• Concurrent TMS-EEG was used to evaluate neuroplastic changes in DLPFC analgesia.
• DLPFC analgesia was associated with a smaller N120 peak in the prefrontal cortex.
• DLPFC analgesia was also related to a larger N120 peak in the insular cortex.
• There was a strong negative correlation between N120 changes of these two regions.
• DLPFC-rTMS enhanced the prefrontal and somatosensory coupling in the gamma frequency.

Introduction
Transcranial magnetic stimulation (TMS) is a safe and
noninvasive form of brain stimulation. Repetitive TMS
(rTMS) can induce neuroplastic changes, which has
been used to manage chronic pain conditions such as
neuropathic pain (Pascual-Leone et al. 1998; Passard et al.
2007; Lefaucheur et al. 2014). High-frequency (≥5 Hz)
rTMS over the contralateral primary motor cortex (M1)
can induce transient analgesic effects (Lefaucheur et al.
2014). In addition, the dorsolateral prefrontal cortex
(DLPFC) has been increasingly used as an alternative
target in pain management (Short et al. 2011; Leung
et al. 2018; Hosomi et al. 2020) due to its capacity in
the modulation of pain experience (Tracey and Mantyh
2007). Indeed, our group has recently demonstrated an

analgesic effect of DLPFC-rTMS in neuropathic pain
conditions (Che, Cash, et al. 2021).

However, DLPFC-rTMS may not be able to induce long-
lasting analgesia as indicated by the current literature
(Che, Cash, et al. 2021). Moreover, the mechanisms
of action associated with DLPFC analgesia are still
unclear. Understanding the mechanisms of DLPFC
analgesia may therefore help to optimize the analgesic
efficacy of DLPFC stimulation. There is evidence that
excitatory stimulation of this region may evoke top-down
modulation of descending pain systems in brainstem
regions, such as the periaqueductal gray (PAG) and the
rostral ventromedial medulla (RVM) (Martin et al. 2013;
Taylor et al. 2013; De Martino et al. 2019). For instance,
the analgesic effect of DLPFC-rTMS was found to be
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associated with enhanced brain activity in the prefrontal
cortex but with decreased activity in the midbrain and
medulla regions (Taylor et al. 2013).

In addition to the top-down mechanisms, cortical
excitability is a promising mechanism as repeated ses-
sions of rTMS restored defective intracortical inhibition
in chronic pain (Lefaucheur et al. 2006). Concurrent TMS
and electroencephalogram (TMS-EEG) is able to evaluate
neuroplastic effects of rTMS delivered over nonmotor
regions, such as the prefrontal cortex (Fitzgerald et al.
2008; Cash et al. 2017). TMS-evoked potentials (TEPs)
are believed to reflect the shifts in the inhibition–
excitation balance in cortical circuits following a single
TMS pulse (Premoli, Castellanos, et al. 2014; Du, Rowland,
Summerfelt, Choa, et al. 2018; Du, Rowland, Summerfelt,
Wijtenburg, et al. 2018), which have been demon-
strated to be stable and reproducible cortical responses
(Ozdemir, Boucher, et al. 2021; Ozdemir, Tadayon, et al.
2021). Among them, N120 has the highest signal-to-
noise ratio (SNR), which is considered to reflect GABAB-
mediated intracortical inhibition (Premoli, Castellanos,
et al. 2014; Premoli, Rivolta, et al. 2014; Darmani et al.
2019). Our group has previously demonstrated N120
changes in the prefrontal cortex following DLPFC-rTMS
(Chung et al. 2017; Che et al. 2019).

In addition, concurrent TMS-EEG is also able to
evaluate neuroplasticity changes in distributed regions
by means of neural oscillations and network properties
(Chung et al. 2017; Premoli et al. 2017; Pisoni et al. 2018).
For instance, TMS-EEG revealed a frontoparietal pathway
which seems to distinguish self and others’ somatosen-
sory states (Pisoni et al. 2018). As described above, DLPFC
stimulation is capable of modulating descending pain
systems (Taylor et al. 2013). Moreover, DLPFC is also
believed to modulate corticocortical pathways involved
in analgesia, such as the insular cortex and the anterior
cingulate cortex (ACC) (Lorenz et al. 2003). Evaluating
the neuroplastic changes in distributed regions may,
therefore, refine the understanding of DLPFC analgesia
associated with and potentially beyond top-down pain
modulation.

Using TMS-EEG, the current study was designed
to investigate the local and distributed neuroplastic
changes associated with DLPFC analgesia. We hypoth-
esized that the analgesic effect of DLPFC-rTMS would
be associated with increased neural activity in the
prefrontal cortex assessed with TEPs. We also explored
the neuroplastic changes in prefrontal connections fol-
lowing DLPFC stimulation, with a focus on neuroplastic
changes in corticocortical pathways involved in pain and
analgesia.

Materials and Methods
Participants
An a priori sample size calculation (alpha = 0.05, beta = 0.8,
Cohen’s d = 0.5) indicated a minimum of 34 participants
for the study to be sufficiently powered. A group of

36 healthy, right-handed, TMS-eligible (Rossi et al.
2011) adults were recruited to account for potential
dropouts. Exclusion criteria included a history or current
diagnosis of psychiatric disorder, or use of psychoactive
medication, as assessed by the Mini International Neu-
ropsychiatric Interview (MINI) (Sheehan and Lecrubier
2001). Two participants withdrew from this study after
the first session. Data from 34 participants (age range:
18–25 years, mean ± SD: 20.85 ± 2.03, 20 female) were
therefore analyzed. Among these participants, 85%
(29/34) were naïve to any form of TMS, and five of
them reported to have a most recent TMS experience at
least two weeks ago. All participants provided a written
informed consent prior to the experiment. This study
was approved by the Ethics Committee in the Centre for
Cognition and Brain Disorders of the Hangzhou Normal
University (20201218) and was conducted in accordance
with the Declaration of Helsinki.

Experimental Design and Procedure
This was a single-blind, crossover, and sham-controlled
study. Participants visited the laboratory at two time
points (≥72 h, Mean ± SD: 7.34 ± 6.05 days), receiving
a single session of DLPFC or sham stimulation with
the sequence being pseudorandomized and counterbal-
anced. Before and after rTMS, 105 single pulses were
delivered to the DLPFC in order to assess neuroplastic
changes. Participants also underwent a cold pain
protocol before and after rTMS in each session.

Resting Motor Threshold and Single-Pulse
TMS-EEG
Resting motor threshold (RMT), defined as the min-
imum intensity to induce motor-evoked potentials
(MEPs) > 0.05 mV of the first dorsal interosseous (FDI)
muscle in 5/10 trials, was measured before each session.
Single pulses to the hand region of the left M1 (45◦ to the
midline, handle pointing backward) at 5 s ± 10% jitter
intervals were sent by a figure-eight coil connected to
a Magstim Rapid2 system (Magstim Company Ltd). It is
noted that RMT was determined after the EEG setup for
consistency as rTMS was delivered in the same setting.
Coil position was measured relative to the nasion and
inion to facilitate consistent repositioning of the coil
between sessions (Rogasch et al. 2013; Chung, Rogasch,
Hoy, and Fitzgerald 2018; Chung, Rogasch, Hoy, Sullivan,
et al. 2018; Che, Fitzgibbon, et al. 2021).

Single pulses (n = 105) were delivered to the left DLPFC,
which was located according to the Beam F3 algorithm
(Beam et al. 2009). The coil was positioned at 90◦ relative
to midline (handle pointing left, see Fig. 1a), with the
intensity being set to 110% RMT (Che et al. 2019). A mask-
ing noise was played through earplugs during TMS-EEG
recordings (Rocchi et al. 2018, 2021). The sound level was
gradually increased until the participants reported to
barely hear single-pulse TMS clicks at 110% RMT.
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Figure 1. Study protocol and results. (a) Study protocol. (b) rTMS protocol. (c) Main effect of increased cold pain threshold (PBonf = 0.037) from pre- to
poststimulation. X denotes P < 0.05. RMT denotes resting motor threshold.

EEG Recordings
EEG recordings during single-pulse TMS took place in a
temperature-controlled, sound-attenuated, and electri-
cally shielded room. Participants were seated in a chair
with their eyes opening and looking forward. EEG data
were recorded using 32 active electrodes mounted on a
cap (Brain Products GmbH) according to the international
10–20 system, including Fp1, Fp2, F3, F4, C3, C4, P3, P4,
O1, O2, F7, F8, T7, T8, P7, P8, Fz, Cz, Pz, FC1, FC2, CP1,
CP2, FC5, FC6, CP5, CP6, TP9, TP10, CPZ, POz, Oz. FCz and
AFz were specified as the reference and ground electrode,
respectively. EEG impedances were kept below 10 kΩ

throughout the recordings. It is noted that the cold pain
equipment was turned off during EEG recordings to avoid
noises.

Pain Protocol
A cold pain protocol has been repeatedly used in rTMS
studies (Summers et al. 2004; Lefaucheur et al. 2008; Che,
Fitzgibbon, et al. 2021). In this study, participants were
asked to insert their right hand into a bucket of circulat-
ing cold water at 5 ± 0.1 ◦C (dhc-0505-a, http://www.qiwei
yiqi.com/) (Rainville et al. 1992; Mitchell et al. 2004; Che,
Fitzgibbon, et al. 2021). It is noted that the anticipation of
pain could modulate pain experience (Wager et al. 2004;
Vase et al. 2005). Participants were initially asked to insert
their left hand into the cold water before pain assess-
ment. During the exposure of left hand, participants
were asked to describe their feelings of the cold water,
with the purpose to experience the cold pain used here.
Participants then dried their left hand and took a break
before the cold pain assessment with the right hand.

Pain threshold was recorded as the time (in seconds)
at which participants first reported cold pain (Lowery
et al. 2003; Santarcangelo et al. 2013). As pain can affect
corticospinal excitability, participants then took a break

for 5 min during which they inserted the right hand into a
hand warmer (∼40 ◦C) to recover from the cold pain (Che,
Fitzgibbon, et al. 2021).

Repetitive Transcranial Magnetic Stimulation
Repetitive TMS was delivered to the left DLPFC with an
intensity of 80% RMT (Nahmias et al. 2009; de Andrade
et al. 2014). The rTMS protocol included 15 trains of 10-
s stimulation given at 10 Hz, with the intertrain interval
being set to 50 s (1500 pulses) (Nahmias et al. 2009; de
Andrade et al. 2011). The Sham stimulation was delivered
using the same protocol, with the coil being orientated
at 90◦ to the scalp so that the magnetic field would be
delivered away from the scalp (Pascual-Leone et al. 1998).

TMS-EEG Data Analysis
TMS-EEG data were preprocessed as previously described
(Chung et al. 2017; Che et al. 2019). Offline TMS-EEG
data analysis was performed with EEGLAB (Delorme and
Makeig 2004; Rocchi et al. 2021), FieldTrip (Oostenveld
et al. 2011), and custom scripts running on Matlab
(R2017a, The MathWorks, USA).

TMS-EEG signals were epoched around the TMS pulses
(−1 to 2 s) and baseline corrected (−500 to −50 ms).
The large magnetic pulses were then removed and
interpolated (−5 to 20 ms). Although the time window (−5
to 20 ms) was slightly larger than that in the literature
(−5 to 15 ms), TMS pulses were nicely removed and
interpolated, leaving no clear decay artifacts in the
following cleaning procedures (see Supplementary Mate-
rials). The epoched data were concatenated across the
two time points (pre- and poststimulation) to avoid bias
in component rejection. Data were then downsampled
to 1000 Hz. Prior to independent component analysis
(ICA), the epochs were visually inspected and those with
excessive noise and/or disconnected electrodes were
removed. Two rounds of FastICA were performed using
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a semiautomated component classification algorithm
(Rogasch et al. 2014, 2017). The first round of ICA was
performed to remove large TMS-evoked muscle artifacts
and decay artifacts (Rogasch et al. 2014). Data were
then band-pass (1–100 Hz) and band-stop filtered (48–
52 Hz) and epochs were visually inspected again to
remove any anomalous activity. The second round of
ICA was performed to remove residual artifacts (e.g.,
eyeblinks, continuous muscle activity, saccadic move-
ment, electrode noises, etc.). Removed channels were
then interpolated. Finally, EEG signals were re-referenced
to the common average reference and split into original
time points (Pre- and poststimulation). The final pulse
numbers were (Mean ± SD): Pre_DLPFC: 95.94 ± 4.20;
Pre_Sham: 96.24 ± 5.25; Post_DLPFC: 95.53 ± 5.99; and
Post_Sham: 95.76 ± 8.06.

Source localization was further performed on TEP
changes. The standardized low-resolution electro-
magnetic tomography algorithm (sLORETA) is able to
calculate the three-dimensional distribution of neuronal
activity in the cerebral cortex based on the scalp poten-
tial distribution (Pascual-Marqui 2002). This algorithm
has been frequently used to estimate possible generators
of neuronal oscillations or evoked potentials, with the
results being validated using combined EEG-positron
emission tomography (PET) and EEG-functional magnetic
resonance imaging (fMRI) data (Pizzagalli et al. 2003;
Mulert et al. 2004). In the current study, the current
source density was primarily estimated in the 120 ms
time window (90–130 ms) in which different amplitudes
were observed form pre- to poststimulation.

Connectivity analysis was further performed on the
TMS-EEG data by computing the debiased weighted
phase lag index (WPLI) between channels. The WPLI is
a measure of phase coherence of two signals, based on
the imaginary part of the cross-spectrum (Pisoni et al.
2018). By doing so, WPLI allows to reduce the sensitivity
of the index to additional, unrelated noise sources, such
as volume conduction, as well as to increase statistical
power to detect changes in phase synchronization (Vinck
et al. 2011). In order to calculate the WPLI, TMS-EEG data
were initially decomposed to time–frequency domains
using the “mtmconvol” methodology, for example, delta
(0–3 Hz), theta (4–7 Hz), alpha (8–12 Hz), beta (13–30 Hz),
and gamma (31–100 Hz). Finally, the debiased WPLI was
computed for each electrode pair, obtaining a 32 × 32
WPLI matrix for pre- and post-rTMS for each stimulation
condition.

Statistical Analyses
Statistical analyses were performed in SPSS (version 22;
IBM Corp). In cases the data did not meet the requirement
for normality (Shapiro–Wilk test), data were winsorized
by setting extreme values to the corresponding adjacent
5th or 95th percentile value (Wilcox 2011) (in total two
participants). A repeated measures two-way analysis of
variances (ANOVA) was performed to analyze the effects

of stimulation (DLPFC or sham) and time (pre and post)
as well as their interaction on the pain threshold.

For TEPs, statistical analyses were conducted using
cluster-based permutation statistics at a global scalp
level (Maris and Oostenveld 2007). The cluster-based per-
mutation test provides a straightforward way to solve
the problem of multiple comparisons across space (EEG
channels) and time (Maris and Oostenveld 2007). This
was done in Fieldtrip, an open-source MATLAB toolbox
(Oostenveld et al. 2011). Statistics were performed on
peaks of interest (N45: 30–50 ms, P60: 50–70 ms, N120:
90–130 ms and P200: 160–240 ms), which are the most
common peaks described in the literature (Rogasch et al.
2014; Belardinelli et al. 2021) as well as illustrated by
our data (Fig. 2). Paired t-tests were conducted across
time points (post vs. pre) for each TMS condition. An
observed statistics value was considered in the clus-
ter permutation if it was below the threshold of 0.05
in at least two of the neighboring channels (Oosten-
veld et al. 2011). We performed 5000 iterations of trial
randomization for generating the permutation distribu-
tion, controlling for multiple comparisons across space.
A corrected P-value below 0.025 (two-tailed) was consid-
ered significant. Bivariate correlations were further com-
puted to assess the relationship between TEP changes
and changes in the pain threshold.

For sLORETA, statistical differences between time
points (pre and post) were calculated as images of voxel-
by-voxel t values. The localization of different cortical
activities was based on the standardized electrical
current density and resulted in 3D t score images
(Pascual-Marqui 2002). In these images, cortical voxels
of significant difference were identified using a non-
parametric approach corrected at 0.05 determined by
5000 randomizations (Pascual-Marqui 2002; Che et al.
2018).

Connectivity WPLI values were statistically tested
using the network-based statistic (NBS) toolbox (Zalesky
et al. 2010). The NBS is a nonparametric statistical
method which uses cluster analysis to perform null
hypothesis testing across networks of values from pairs
of potentially connected nodes (Zalesky et al. 2010).
Paired t-tests were performed to examine significant
connectivity from pre- to poststimulation for each
condition (DLPFC and sham). A primary threshold for
electrode pairs was set at P < 0.005 to ensure that only
robust differences in connectivity between electrode
pairs would be compared at the cluster level (Bailey
et al. 2018). The secondary threshold for family-wise
corrected cluster null hypothesis testing was P < 0.025
(two-tailed) (Che et al. 2019). Results were visualized
using BrainNet viewer (Xia et al. 2013). It is noted that
the NBS was primarily performed on the N120 time
window, which showed significant TEP changes following
stimulation (see below in Plastic Effects of rTMS on TEPs),
with secondary analyses being performed on other time
windows of interest.
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Figure 2. TEPs and voltage distribution following single-pulse TMS before the application of rTMS. Data were combined across the DLPFC- and sham-
stimulation at baseline. (a) Butterfly plots of all electrodes with peaks of interest highlighted. The waveform in black line indicates the frontocentral
electrode Fz for illustration purposes. (b) Topographical voltage distribution for the peaks of interest.

Supplementary Analysis
Supplementary analysis was performed on side effects
of rTMS, that is, the presence of headache and scalp
discomfort assessed by visual analogue scale (VAS, 0–10,
0: none, 5: medium, 10: extremely).

Results
Time-domain signals were presented as butterfly plots as
well as voltage distribution across the scalp in Figure 2.
Single-pulse TMS over the left DLPFC resulted in a series
of negative and positive peaks including N45, P60, N120,
and P200, in line with previous TMS-EEG studies assessed
in the prefrontal cortex (Hill et al. 2017; Chung, Rogasch,
Hoy, and Fitzgerald 2018; Chung, Rogasch, Hoy, Sullivan,
et al. 2018; Che et al. 2019). Each peak showed a distinct
pattern in scalp topography, indicating the spreading of
voltage distribution across time.

Effects of rTMS on Pain Experience
The ANOVA revealed a main effect of time on cold
pain threshold (F1,33 = 4.492, P = 0.042, partial η2 = 0.12),
with post hoc tests suggesting that both DLPFC and
sham stimulations increased the pain threshold from
pre- to poststimulation (PBonf = 0.037, MeanPre = 6.682,
MeanPost = 7.316) (Fig. 1c).

Plastic Effects of rTMS on TEPs
Grand average TEP waveforms are shown in Figure 3a,b.
Cluster-based permutation tests revealed two signif-
icant clusters in N120 in DLPFC stimulation. The
first cluster was a smaller N120 peak (i.e., positive)
surrounding the following electrodes: F4, FC6, T8, FC2,
C4, (Pcorrected = 0.008). The other cluster was identified as
a larger N120 peak (i.e., negative) surrounding the left
electrodes: CP5, P3, P7, and O1, (Pcorrected = 0.014) (Fig. 3c).
Moreover, these two clusters demonstrated a strong

negative correlation (r = −0.853, P < 0.001), indicating
potential coherence between these two clusters (Fig. 3e).

Additionally, changes in the N120 amplitude were pos-
itively associated with increases in the pain threshold
only in DLPFC stimulation (r = 0.373, P = 0.030) but not in
the sham stimulation (Fig. 3f ).

No other significant cluster was observed in other
times of interest (Ps > 0.05). The sham stimulation
revealed no significant changes in TEP (Ps > 0.05).

Source Localization
Source analysis identified increased activity in the right
frontal cortices (Brodmann area [BA] 46 and Montreal
Neurological Institute [MNI] coordinates: X = 50, Y = 40,
Z = 20, t = 0.257, P < 0.05) as well as decreased source
activity in the left insular cortices (Brodmann area [BA] 13
and Montreal Neurological Institute [MNI] coordinates:
X = −46, Y = 10, Z = 6, t = −0.202, P < 0.05) (Fig. 3d).

Effects of rTMS on EEG Connectivity
NBS revealed a significant increase in gamma band
coherence following DLPFC stimulation (T = 2.95, P < 0.025)
(Fig. 4a), mainly between the prefrontal and somatosen-
sory cortices (C3-Fz, F3-FC6) (Fig. 4b). No other significant
clusters were observed in other frequency bands or
times of interest by DLPFC stimulation (Ps > 0.05).
No significant clusters were observed in the sham
stimulation (Ps > 0.05).

Supplementary Results
In total, eight participants reported mild scalp dis-
comfort in DLPFC stimulation (MeanDLPFC = 3.875) and
two in the sham condition (MeanSham = 2.5). Six par-
ticipants reported mild headache in DLPFC stimula-
tion (MeanDLPFC = 3.5) and none in the sham condi-
tion. All these side effects disappeared by the end of
the session.
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Figure 3. TEP results of rTMS. Grand average TEP waveforms from the electrode Fz is presented for illustration purposes in (a) DLPFC and (b) sham
condition. (c) Indicates the two significant clusters in N120 following the DLPFC stimulation (right cortices: F4, FC6, T8, FC2, C4, Pcorrected = 0.008, left
cortices: CP5, P3, P7, O1, Pcorrected = 0.014). (d) Source localization of N120 TEPs in the time window of 90–130 ms, results were located at the left insular
and right prefrontal cortices, multiple comparison corrected at P < 0.05. (e) Illustrates the negative correlation between the two significant clusters
of N120 in the DLPFC stimulation (r = −0.853, P < 0.001). (f ) Illustrates the positive correlation between N120 changes and changes in pain thresholds
(r = 0.373, P = 0.030). Error bar represents 95% confidence interval. X indicates P < 0.05, ∗ indicates P < 0.01.

Discussion
Using concurrent TMS-EEG, the current study was
designed to investigate the neuroplastic mechanisms
of DLPFC analgesia. We provided novel evidence that
DLPFC analgesia was associated with smaller N120

amplitude in the contralateral prefrontal cortex and
larger N120 peak in the ipsilateral insular cortex. Further
analysis revealed a strong negative correlation between
N120 changes of these two regions. Changes in N120
amplitude were positively associated with increases in
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Figure 4. EEG connectivity and results. (a) A channel-by-channel correlation matrix for illustration purposes. (b) The DLPFC stimulation increased gamma
band coherence between the prefrontal and sensorimotor cortices. Large dots highlight the significant electrodes, and the color and thickness of the
lines indicate the t statistics. A.U. denotes arbitrary unit.

the pain threshold in DLPFC stimulation only. In addition,
our data demonstrated enhanced coherence between the
prefrontal and somatosensory cortices oscillating in the
gamma frequency following DLPFC-rTMS. Although the
sham stimulation was associated with pain reduction to
some extent, there were no changes in local neuroplas-
ticity or network property.

The cold pain data indicated that both DLPFC and
sham stimulations increased the pain threshold (Fig. 1c).
Although there was no significant difference, the
increase in pain threshold seemed to be larger in DLPFC
stimulation (� = 0.80) compared with the sham (� = 0.48)
stimulation. Further analysis indicated that the increase
in pain thresholds was positively associated with N120
amplitude changes in DLPFC stimulation but not in the
sham stimulation (Fig. 3f ). These findings corroborate
the argument that the DLPFC is an important target for
pain management (Fierro et al. 2010; Martin et al. 2013;
Taylor et al. 2013; Seminowicz et al. 2018). Moreover,
this finding is in line with our latest meta-analysis,
which found that high-frequency rTMS over the DLPFC
significantly reduced provoked pain (Che, Cash, et al.
2021). In addition, the sham stimulation may also be able
to reduce the pain experience to some extent. Our TMS-
EEG data indicated that this effect is not associated with
neuroplastic changes (discussed next). Potential impacts
caused by pain anticipation and/or habituation were
also carefully controlled by initially exposing the left
hand into the cold water. It is possible that the increased
pain threshold in the sham stimulation is associated
with a placebo effect as demonstrated in previous
studies (Borckardt et al. 2014; Conforto et al. 2014;
Granato et al. 2019).

We provided novel evidence that DLPFC stimulation
resulted in a smaller N120 peak (positive cluster) in the
contralateral prefrontal cortices (Fig. 3c). This finding
was supplemented by the source evidence of increased
brain activity in the contralateral prefrontal regions

(Fig. 3d). The N120 is considered to reflect GABAB-
mediated intracortical inhibition (Premoli, Castellanos,
et al. 2014; Premoli, Rivolta, et al. 2014; Darmani et al.
2019). Moreover, N120 amplitude in the nonstimulated
hemisphere was decreased by the administration of
GABAA agonists and/or modulators, suggesting the
suppression of signal propagation under the influence
of drugs with positive modulation at the GABAA receptor
(Premoli, Castellanos, et al. 2014; Premoli, Rivolta,
et al. 2014; Darmani et al. 2019). In addition, local
GABA concentrations were found to be associated with
decreased connectivity across hemispheres, in which
local GABA levels are suggested to inhibit the spread
of TMS-evoked activities (Du, Rowland, Summerfelt,
Choa, et al. 2018). Our finding of smaller N120 in
the contralateral prefrontal regions may be a result
of GABAA-mediated inhibition in the stimulated site
following DLPFC stimulation.

More interestingly, our data demonstrated a larger
N120 peak primarily in the left parietal regions
following DLPFC stimulation (Fig. 3c). Source data further
indicated decreased insular activity associated with
this TEP change. As described above, a more negative
N120 peak may therefore indicate increased GABAB-
mediated intracortical inhibition (Premoli, Castellanos,
et al. 2014) in the insular cortex following DLPFC
stimulation. It is widely accepted that the insular cortex
is an essential component of the pain matrix, which is
closely associated with the affective/emotional aspect of
pain (Ostrowsky et al. 2002;Kishima et al. 2007 ; Bushnell
et al. 2013). More interestingly, neuroplastic changes
in the left insular cortex fits nicely into the fact that
the right hand was exposed to cold pain. These results
together indicate that DLPFC-rTMS is able to increase
intracortical inhibition in the insular cortex, which is
directly involved in the processing and modulation of
the pain experience. This adds to the literature on the
mechanisms of DLPFC analgesia by presenting novel
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neuroplastic changes in the insular cortex that can be
modulated by DLPFC stimulation.

In addition, there was a strong negative correlation
between N120 changes in the prefrontal and insular
cortices following DLPFC stimulation (Fig. 3e). This inter-
esting finding indicates that DLPFC stimulation could
entrain the synchronization between the prefrontal and
insular cortices. The current distribution following sin-
gle pulses is also consistent with this finding, which
demonstrated a negative distribution surrounding the
prefrontal cortex as well as a positive current distribution
in the parietal-occipital regions in the N120 time window
(Fig. 2b). These findings are in line with previous data of
our group (Che et al. 2019) and of others (Rogasch et al.
2014; Chung, Rogasch, Hoy, and Fitzgerald 2018). More
importantly, an increased pain threshold was positively
associated with the amplitude changes encompassing
both the positive and negative cluster but not with the
positive or negative cluster alone (Fig. 3f ). This finding
provides direct evidence to support the synchronization
between the prefrontal and insular cortices that likely
contributes to DLPFC analgesia.

In addition, our data demonstrated that DLPFC-
rTMS increased gamma band coherence between the
prefrontal and somatosensory regions (Fig. 4). Gamma
oscillations are believed to reflect GABAergic interneu-
ron inhibition (Whittington et al. 1995; Leung and Shen
2007; Oren et al. 2010). Moreover, long interval cortical
inhibition (LICI), a paired-pulse TMS paradigm to index
GABAB–receptor-mediated inhibitory neurotransmission,
was found to suppress prefrontal gamma oscillation
(Farzan et al. 2009). Our findings of increased gamma
band coherence may, therefore, indicate increased inhi-
bition over the somatosensory cortices following DLPFC
stimulation. It is interesting to note that an increased
pain threshold was associated with neuroplastic changes
in the prefrontal–insula dyad but not with the coupling
changes between the prefrontal and somatosensory
regions. The insular cortex is suggested to mainly
encode pain emotions (Kishima et al. 2007; Bushnell
et al. 2013) while the somatosensory cortex more likely
responds to the sensory aspects of pain (Craig 1996;
Boadas-Vaello et al. 2016). Our findings therefore indicate
that participants in this study might rely on unpleasant
feelings to report cold pain.

Our data extend previous studies on potential mech-
anisms of DLPFC analgesia. A line of evidence indicated
that rTMS over the DLPFC may drive top-down pain
modulation, with studies demonstrating increased brain
activation in the prefrontal cortex and decreased activity
along thalamus, midbrain, and medulla following DLPFC
stimulation (Martin et al. 2013; Taylor et al. 2013).
Our data demonstrated neuroplastic changes in the
prefrontal cortex as well as enhanced synchronization
between the prefrontal and somatosensory cortices. Our
findings agree with the descending pain modulation in a
way that DLPFC-rTMS is capable of activating inhibitory
circuits involved in nociceptive transmission. In addition

to descending pain modulation, there is an argument
that DLPFC may modulate corticocortical pathways,
such as the insular cortex and ACC, in the modulation
of pain (Lorenz et al. 2003; Tracey and Mantyh 2007).
Our data provide direct evidence in which the DLPFC is
able to modulate the neuroplastic changes in the insular
cortex as well as its association with the changes in pain
experience.

It is worth noting that TEPs can be easily contaminated
by auditory and somatosensory artifacts during concur-
rent registrations (Rogasch et al. 2014). Rocchi et al. (2021)
have carefully investigated the influence of auditory and
somatosensory components on TEPs by adding a series
of sensory control conditions. They found N120 and P200
to be enhanced by auditory and somatosensory stimula-
tion, particularly locating over a large area surrounding
the central electrodes. Meanwhile, the genuine cortical
responses to single pulse TMS were more lateralized and
much smaller. More importantly, these artifacts could be
suppressed by appropriate noise masking (Rocchi et al.
2021). By using noise masking, our data demonstrated
lateralized N120 changes in contralateral prefrontal and
ipsilateral parietal electrodes, locating away from the
central electrodes that could be associated with sensory
artifacts. Moreover, source data indicated N120 changes
to be associated with brain activations in the prefrontal
and insular cortices. In addition, we found a significant
relationship between increased pain threshold and N120
changes, further supporting the N120 changes reported
here to reflect genuine cortical responses to TMS.

There are some limitations in this study. We used a 32-
channel montage for TMS-EEG recordings. Although a 32-
channel montage can be used to measure TEPs (Hill et al.
2017; Casula et al. 2018; Freedberg et al. 2020), higher
density electrode arrays (e.g., 64) are more often used
that can provide better spatial resolution. Nonetheless,
we provided source data to assist in the localization of
TEP changes. Future studies may wish to build on our
findings and to investigate the neuroplastic changes in
DLPFC analgesia with higher spatial resolution. Although
the N120 changes reported here may not be contam-
inated by sensory artifacts, it is recommended to add
certain sensory control techniques in TMS-EEG coregis-
tration to assist in the identification of potential artifacts
(Rocchi et al. 2021). Pain threshold was evaluated in this
study, which has been most often used to measure pro-
voked pain in DLPFC-rTMS studies (for a review, see Che,
Fitzgibbon, et al. 2021). DLPFC-rTMS has also demon-
strated consistent analgesia across the measurements of
pain threshold and pain ratings (for a reviewer see Che,
Fitzgibbon, et al. 2021). Nonetheless, future studies may
wish to evaluate neuroplastic changes associated with
different aspects of pain, such as pain intensity. In the
current study, the duration of cold pain was too short
to collect enough trials for EEG or TEP. In addition, the
Beam F3 method was used here, which is considered
sufficient and efficient for the localization of the DLPFC
(Beam et al. 2009). However, a navigation system would
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be able to increase targeting accuracy and assist in the
identification of disease relevant brain connections and
networks mediating positive treatment outcomes (Cash
et al. 2021). Moreover, it is interesting for future studies to
replicate our findings in old adults and even in individ-
uals suffering from chronic pain. It is worth noting that
there is an inconsistency in the literature on the latency
of the negative peak around 100 ms. Most of the studies
tended to term it as N100 or N120 based on their own
data in the time domain (Rogasch et al. 2014; Chung et al.
2017; Premoli et al. 2018). Our data demonstrated the
N120 peak surrounding 118 ms (Fig. 2a). Future studies
may wish to investigate the confounders associated with
the differences in peak latencies, such as the amplifying
systems and the triggering latencies.

Our findings may bear clinical significance for opti-
mizing the analgesic efficacy of DLPFC-rTMS. Our data
indicated that DLPFC stimulation modulates the insular
cortex, which is involved in nociceptive transmission
and pain emotion and can be activated during noxious
somatosensory stimulation. This finding highlights a
potential circuit for future studies to modulate with
brain stimulation techniques and therefore enhance the
analgesic efficacy in clinical settings. Furthermore, the
modulation of somatosensory cortex by DLPFC-rTMS
may help to predict the response to rTMS treatment as
the response rate in chronic pain is close to moderate
and far from being excellent at its best (see Lefaucheur
et al. 2014 for response rate). Indeed, there is evidence
to demonstrate the potential of prediction models
in optimizing the efficacy of rTMS treatment (Bailey
et al. 2018). In addition, our data indicate immediate
neuroplastic changes following a single-session TMS
intervention. This result highlights the potential of
repetitive sessions in the management of pain experience
as rTMS treatments tend to be underdosed in chronic
pain studies compared to the treatments of depression
(Che, Cash, et al. 2021).

In conclusion, the analgesic effects of DLPFC were
associated with GABAergic neuroplastic changes in the
prefrontal cortex and the insular cortex as demonstrated
by concurrent TMS-EEG. DLPFC stimulation further
demonstrated enhanced connectivity between the pre-
frontal cortex and the somatosensory cortex oscillating
in the gamma frequency. Overall, we present novel
evidence on local and distributed neuroplastic changes
associated with DLPFC analgesia.
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