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a b s t r a c t 

Fibromyalgia (FM) is a chronic condition characterized by widespread pain of unknown etiology associated with alterations in the central nervous system. Although 
previous studies demonstrated altered patterns of brain activity during pain processing in patients with FM, alterations in spontaneous brain oscillations, in terms of 
functional connectivity or microstates, have been barely explored so far. Here we recorded the EEG from 43 patients with FM and 51 healthy controls during open-eyes 
resting-state. We analyzed the functional connectivity between different brain networks computing the phase lag index after group Independent Component Analysis, 
and also performed an EEG microstates analysis. Patients with FM showed increased beta band connectivity between different brain networks and alterations in 
some microstates parameters (specifically lower occurrence and coverage of microstate class C). We speculate that the observed alterations in spontaneous EEG 

may suggest the dominance of endogenous top-down influences; this could be related to limited processing of novel external events and the deterioration of flexible 
behavior and cognitive control frequently reported for FM. These findings provide the first evidence of alterations in long-distance phase connectivity and microstate 
indices at rest, and represent progress towards the understanding of the pathophysiology of fibromyalgia and the identification of novel biomarkers for its diagnosis. 
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. Introduction 

Fibromyalgia (FM) is a chronic disorder characterized by widespread
ain and frequently accompanied by other symptoms such as fatigue,
leep disturbances or attention and memory problems ( Wolfe et al.,
010 ). It is a disease of unknown etiology, and although abnormalities
t the peripheral level have been found, FM seems to be driven by alter-
tions in the central nervous system ( Üçeyler et al., 2013 ; Serra et al.,
014 ; Clauw, 2015 ). In this sense, brain differences have been ob-
erved in FM, both at structural ( Jensen et al., 2013 ; Burgmer et al.,
009 ; Schmidt-Wilcke et al., 2007 ) and functional levels. At the func-
ional level, studies with functional Magnetic Resonance Imaging (fMRI)
hat applied experimental pain to patients with FM generally found
igher activation in pain-related brain areas (or similar activations at
ower intensity of nociceptive stimulation) in comparison with controls
 Gracely et al., 2002 ; Pujol et al., 2009 ; Kim et al., 2011 ); reduced activa-
ion in areas related to descending pain inhibition ( Jensen et al., 2009 )
r differences in both directions -higher and lower levels of activation-
ver several brain locations ( Burgmer et al., 2009 ; Burgmer et al.,
010 ). In studies of electrical brain activity, increased evoked responses
nd reduced habituation to nociceptive stimuli are common findings
 Gibson et al., 1994 ; de Tommaso et al., 2011 ; de Tommaso et al., 2014 ).
∗ Corresponding author at: Psychological Neuroscience Lab, Psychology Research C
E-mail address: albertojac.gonzalez@gmail.com (A.J. González-Villar). 

# Deceased 28/12/2018. 

ttps://doi.org/10.1016/j.neuroimage.2020.117266 
eceived 1 June 2020; Received in revised form 6 August 2020; Accepted 10 August
vailable online 25 August 2020 
053-8119/© 2020 The Author(s). Published by Elsevier Inc. This is an open access a
Given that brain indexes related with ongoing pain can be differ-
nt from those associated with experimental evoked pain ( Davis et al.,
017 ), the study of spontaneous brain activity may provide novel in-
ights into the central alterations related with FM. In this sense, us-
ng functional neuroimaging, several abnormalities have been observed
n the resting-state brain activity of patients with FM; such as al-
ered connectivity between the insular cortex and other cortical ar-
as ( Ichesco et al., 2014 ), increased connectivity between the peri–
queductal grey matter and insula, anterior cingulate cortex (ACC) and
nterior prefrontal cortex ( Truini et al., 2015 ), or several functional
onnectivity alterations between the default mode network and addi-
ional cortical structures ( Fallon et al., 2016 ). EEG recordings during
esting-state conditions in FM also revealed alterations in power spec-
ral density and connectivity at several frequency bands ( Fallon et al.,
018 ; González-Roldán et al., 2016 ; Lim et al., 2016 ; Choe et al., 2018 ;
siao et al., 2017 ). Nevertheless, there is still a lack of knowledge on

he possible functional connectivity alterations in FM analyzing sponta-
eous oscillatory activity. 

The spontaneous EEG also shows stable spatial distributions of the
lobal scalp potential that vary dynamically over time in an organized
anner ( Koenig et al., 2002 ). A microstate (MS) is a time period (for

round 100 ms) where the scalp potential remains stable and then
entre, School of Psychology, University of Minho, Braga, Portugal. 
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1 Given that there are some missing data, the number of participants evaluated 
in each variable is indicated. 
hanges to a new spatial configuration. MS are quasi-stable spatial pat-
erns of the brain electrical activity that can be classified into a limited
umber of groups based on their topographical characteristics. The mi-
rostate analysis offers a method to characterize the EEG signal by the
patial configuration of the electrical fields, based on the existence of
epeated topographic distributions of the EEG power in sensor space.
ach MS is supposed to be related to a specific neural computation per-
ormed during that period, and thus reflecting different cognitive pro-
esses or mental states. Although there is no complete consensus about
he cognitive process that can be underlying each MS, there are sev-
ral works that have related the different topographical distributions
ith specific cognitive computations ( Milz et al., 2016 ; Seitzman, 2017 ;
réchet et al., 2019 ). In addition, several studies have found alterations

n different parameters of the MS (like occurrence, duration and cover-
ge) in a variety psychiatric and neurological disorders ( Tomescu et al.,
014 ; Jia and Yu, 2018 ; Kikuchi et al., 2011 ); nevertheless, there are no
revious research analyzing those patterns of scalp potentials in FM. 

The aim of the present study was to explore resting state EEG patterns
n patients with fibromyalgia, as compared to healthy controls. To this
nd, we propose two novel approaches: one, to evaluate the functional
onnectivity across different neural networks by computing the Phase
ag Index (PLI) ( Stam et al., 2007 ) between components extracted using
roup-level Independent Component Analysis (group-ICA) ( Huster and
aud, 2018 ); and two, assess the occurrence, duration and coverage of

he microstates obtained in both groups. These analyses will provide
ew insights about large-scale network interactions and brain dynamics
t rest in patients with FM. 

. Method 

.1. Participants 

An initial sample of 46 patients with fibromyalgia (FM) and 53
ealthy controls (HC) matched in sex (all women), age, and years of
ducation participated in this study. The final sample comprised 43 FM
nd 51 HC (see reasons below). All FM patients were diagnosed by a
hysician (usually initially by a general practitioner and confirmed by a
heumatologist) and fulfilled the 1990 American College of Rheumatol-
gy criteria ( Wolfe et al., 1990 ). The exclusion criteria for patients with
M was the presence of other disease that could explain the reported
ain, generalized anxiety disorder, severe depression or other neuro-
ogical and psychiatric disorders, except for low or moderate levels of
epression or anxiety. The same exclusion criteria were applied for the
C group, along with the condition of having no history of chronic pain.
ll participants were asked not to smoke or consume coffee, alcohol, or
ther drugs not prescribed by a physician in the 4 h prior to evaluation.
articipants were asked to keep the consumption of medication used to
lleviate typical FM symptoms to the minimum necessary on the day of
he evaluation. 

All the experimental procedures were approved by the Ethics Com-
ittee of the University of Santiago de Compostela (Spain), in accor-
ance with the Declaration of Helsinki. Participants were informed
bout the experimental protocol and all of them gave written informed
onsent before participation. 

.2. Sociodemographic and clinical assessment 

Participants were interviewed about their sociodemographic status
nd the presence of symptoms related to FM. They completed a series
f Visual-Analogue Scales (VAS) to evaluate their clinical status. Each
cale consisted of a line of 10 cm in length in which the participants
ad to indicate the severity of each symptom from 0 to 10 (where 0 was
no problem at all ” and 10 “maximum severity ”) in the following vari-
bles: pain, health status, morning stiffness, fatigue, mood, headache,
nd sleep quality (all referred to the last month, except for fatigue, which
eferred to the last week). To further explore the presence of depressed
ood, participants completed the Spanish version of Beck Depression
nventory - IA (BDI) ( Sanz and Vázquez, 1998 ). This test has a total
core ranging from 0 to 63 (higher scores indicate more severe depres-
ive symptoms). Sleep quality was also assessed using the Spanish ver-
ion of the Pittsburgh Sleep Quality Index (PSQI), a self-rated question-
aire that explores different aspects of sleep disturbance, with a total
core ranging from 0 to 21 (higher scores indicate poorer sleep quality)
 Buysse et al., 1989 ; Macías and Royuela, 1996 ). Quality of life and gen-
ral health status were evaluated using the Spanish version of the Short-
orm ( Sanz and Vázquez, 1998 ) Health Survey (SF-36) ( Alonso et al.,
995 ; Ware, 2000 ), that ranges from 0 to 100, where 0 is the worst
nd 100 is the best status value. Pain pressure threshold and tolerance
ere measured at the 18 tender point sites ( Wolfe et al., 1990 ) using a
ressure algometer (Wagner Force One, Model FDI). The results of these
ariables are presented in Table 1 . 1 

.3. Procedure and EEG recording 

Participants were fitted with an electrode cap for EEG recording and
ere seated in a comfortable armchair in an electrically isolated room
ith low light and noise levels. They were instructed to keep their eyes
pen and gaze fixed (looking at a specific point on the wall, located
.5 m in front of them) during the 10-minute registration session. They
ere also asked to blink when needed, but trying not to blink too often.

Brain activity was recorded with a 28- electrode cap (Electro-cap In-
ernational, Inc., Eaton, OH, USA), following the 10–20 International
ystem, and referred to the nose. An electrode placed on FPz was used
s ground. The vertical and horizontal electrooculogram was recorded
sing 2 electrodes placed above and below the left eye and 2 electrodes
ttached to the outer canthus of the eyes. The EEG was recorded using
 SynAmps amplifier (Neuroscan Labs, Charlotte, NC, USA) at an ac-
uisition rate of 500 Hz. The signal was filtered online with 0.1–100 Hz
andpass filter and a 50 Hz notch filter. Electrode impedances were kept
elow 10 k Ω. 

.4. EEG preprocessing 

EEG recordings were preprocessed using EEGLab 14.1.1
 Delorme and Makeig, 2004 ) and running in Matlab r2017b. Noisy elec-
rodes were removed and reconstructed using spherical interpolation (a
otal of 6 electrodes were interpolated in the FM group and 7 in the HC
roup; making an average of < 0.15 interpolated electrodes per partici-
ant). Segments with muscular noise or bad recording of the electrodes
ere manually removed. Consecutive epochs of 2 s were extracted and

ndependent Components Analysis (ICA) for noise removal was applied
sing Extended Infomax ICA. Thirty independent components (ICs)
ere extracted from the recording of each participant. Multiple artifact

ejection algorithm (MARA) software was used to automatically select
Cs related to noisy activity, including eye artifacts, muscular artifacts
nd loose electrodes ( Winkler et al., 2011 ). This step was reviewed by
he experimenter to avoid possible misclassification of the ICs by the
lgorithm. During the manual steps of preprocessing, the researcher
as blind to the group to which each of the EEG recordings belonged.
fter removing the electro-oculogram, the EEG was re-referenced to

he average reference. EEG was band-pass filtered from 0.5 Hz to 40 Hz
sing a FIR filter. Subsequently, to homogenize the duration of the
ecordings among the subjects, we selected the first 219 two-second
pochs of the recording, making a total of 438 s. This number of
pochs was selected for showing a good ratio in keeping recordings
f considerable duration without the need to eliminate too many
articipants. Three FM and 2 HC participants were removed for having
ess than 219 epochs, making a final sample of 43 FM and 51 HC. 
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Table 1 

Demographic variables and clinical characteristics of patients and controls; standard devia- 
tions between parenthesis. Abbreviations: FM- Fibromyalgia group; HC- Healthy controls; VAS- 
Visual-Analogue Scale; BDI- Beck depression inventory; PSQI- Pittsburgh Sleep Quality Index; 
SF-36- The Short Form ( Sanz and Vázquez, 1998 ) Health Survey; TP- Tender Points. 

Variable FM HC t -tests p -value 

n Mean (SD) n Mean (SD) 

Age (years) 42 47.8(8.5) 51 45.7(9.4) 1.13 0.26 

Weight (Kg) 42 68.8(11.8) 51 64.6(10.3) 1.80 0.08 

Height (cm) 42 159.9(5.2) 51 161.7(5.5) − 1.62 0.11 

Years of education 42 12.1(3.9) 50 13.9(4.6) − 1.95 0.06 

VAS Pain 42 7.0(2.0) 48 1.7(1.9) 12.73 < 0.001 

VAS Health 43 7.0(2.1) 48 1.7(2.3) 11.30 < 0.001 

VAS Stiffness 43 7.8(1.9) 48 2.9(2.9) 7.61 < 0.001 

VAS Fatigue 43 7.8(1.9) 48 1.7(2.2) 14.07 < 0.001 

VAS Mood 43 4.0(2.8) 48 1.5(1.8) 5.00 < 0.001 

VAS Headache 43 5.5(3.1) 48 1.7(2.9) 6.20 < 0.001 

VAS Sleep 43 7.6(2.5) 48 2.4(2.6) 9.65 < 0.001 

BDI 43 18.9(8.8) 49 5.6(5.6) 8.71 < 0.001 

PSQI 42 12.9(3.9) 47 5.1(3.4) 10.07 < 0.001 

SF-36 40 40.7(14.2) 46 79.3(12.8) − 13.26 < 0.001 

TP threshold 42 2.5(0.9) 49 5.7(0.9) − 16.39 < 0.001 

TP tolerance 42 3.3(1.1) 49 6.2(1.0) − 13.61 < 0.001 
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.5. Network-based connectivity 

For network-based connectivity we first performed the Tempo-
al ‐Concatenation Group ICA (hereinafter referred as group-ICA), that
rovides a powerful method to analyze functional brain networks at
he multi-subject level ( Raud and Huster, 2017 ). First, an initial Prin-
ipal Components Analysis (PCA) was computed for data reduction
nd dimensionality estimation. To select the number of independent
omponents (ICs) we followed the criteria suggested by Huster and
aud (2018) , i.e. the first n components that altogether explain 90% of

he variance of the dataset. The EEGs of all the participants were con-
atenated in the temporal dimension and the group-ICA decomposition
as performed. Each one of the extracted ICs was defined by a common

opography across subjects, and its time-course reconstructed for each
articipant. Group-ICA was performed using the software provided by
he same authors ( Huster and Raud, 2018 ). Subsequently, the phase lag
ndex (PLI) was performed between all pairwise combinations of the re-
onstructed time series for each IC. The PLI measures the asymmetry of
he distribution of phase differences between two signals ( Stam et al.,
007 ), and returns values between 0 (no phase-locking or phase lock-
ng with zero lag) and 1 (perfect phase-locking, discarding zero-lagged
hase coupling). PLI was computed from 2 Hz to 40 Hz in 1 Hz steps.
he mean PLI values among all IC pairwise combinations were com-
uted for group comparisons (see Fig. 1 -Left). Afterwards, we selected
he frequency band that showed significant group differences, and per-
ormed group comparisons for each pair of ICs (see Fig. 1 -Right). 

.6. Microstates analysis 

To obtain the microstates (MS) analyses we used the Microstate tool-
ox ( Poulsen et al., 2018 ). The EEG was segmented based in the Global
ield Power (GFP) and then classified in different classes according to
heir topographies. The datasets were normalized, and a total of 1000
eaks per subject entered the segmentation -with a minimum peak dis-
ance of 10 ms- for the extraction of the GFP peak maps. The calculation
f cluster maps was done using the EEGs of both groups together. The
ptimal number of cluster maps was selected using the cross-validation
riterion ( Pascual-Marqui et al., 1995 ), comparing between different
lassifications in a range from 2 to 8 clusters. The clustering method
or classifying the MS was the modified K-means algorithm ( Pascual-
arqui et al., 1995 ). The convergence threshold was set to 10 − 6 and the
aximum number of iterations was set to 1000. Given that the modified
-mean is a stochastic algorithm, we applied 50 restarts of the classifi-
ation method in order to select the one with the lowest cross-validation
riterion value. Once the number of MS prototypes was selected, they
ere back-fitted to all the recordings -ignoring their polarity, following

he recommendations for the spontaneous EEG- ( Poulsen et al., 2018 ).
he back-fitting from the EEG to the MS prototypes was performed by
omputing the Global Map Dissimilarity index ( Murray et al., 2008 )
hort periods of unstable EEG topographies (shorter than 30 ms) were
ltered using the “small segments rejection ” procedure described in
 Poulsen et al., 2018 ). For the statistical analyses we extracted the fol-
owing parameters: duration (defined as the average time a MS remains
table), occurrences (the number of times a microstate occurred per sec-
nd), and coverage (the proportion of time covered by each MS). 

.7. Statistics 

Group differences in sociodemographic and clinical variables, Phase
ag Index values, and microstate parameters were evaluated using in-
ependent samples t -test. In addition, we performed Spearman’s rank
orrelation analysis to explore the relation between clinical variables
nd connectivity values. To correct for multiple comparisons we ap-
lied the False Discovery Rate correction (FDR) using the Benjamini &
ochberg method ( Benjamini and Hochberg, 1995 ). The FDR was ap-
lied independently for global PLI and for microstates parameters. Effect
izes for PLI and microstates parameters are reported using Hedge’s g s 
 Lakens, 2013 ). 

. Results 

.1. Demographic and clinical variables 

No between-groups differences were observed in demographic vari-
bles such as age, weight, height or education. Nevertheless, patients
howed significant differences in symptoms related to FM, such as pain,
epression, fatigue, sleep quality, or pain pressure threshold and toler-
nce (See Table 1 ). 

.2. Connectivity analyses 

We first extracted 6 independent components (ICs) that explained
he 92.5% of the total variance. Then, the connectivity analysis between
ach pair of ICs and the average of all of them were performed. We ob-
erved significantly higher global (average) PLI values for patients with
M at beta frequencies (from 17 to 34 Hz) with p FDR < 0.05. Independent
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Fig. 1. a: Mean phase lag index (PLI) among all the independent components for patients with fibromyalgia (FM; red ink) and healthy controls (HC; blue ink) at 
each frequency. Red and blue shaded areas show the standard error of the mean for each group. Grey area shows the frequencies with significant group differences 
after false discovery rate correction. t -values for each frequency are shown at the top. b : Raincloud plot with the mean PLI values in the selected frequency window 

(17–34 Hz) for each group of participants. c: Mean phase lag index between each pair of independent components (ICs) for FM (lower triangle) and HC (upper 
triangle) in the frequency band with significant group differences (17–34 Hz). d: Topographies for each extracted IC; thick lines show significant group connectivity 
differences in beta -at p FDR < 0.05 level-, while thin lines show differences at p uncorrected < 0.05 level. 
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amples t -test of the mean PLI values in this frequency range showed a
 (92) = 3.76 and p = 0.0011; Hedges’s g s = 0.77 (mean global PLI values
rom 17 to 34 Hz: FM = 0.040 ± 0.014; HC = 0.031 ± 0.009) (See Fig. 1 -a
nd b). Afterwards, we analyzed the differences in connectivity between
ll pairwise combinations of ICs. Several ICs pairs showed higher con-
ectivity in the FM group with differences at p FDR < 0.05 (See Fig 1 -c
nd d). These differences involve IC 2 (in their interconnections with
Cs 3, 4 and 5) and IC 3 (in their interconnections with ICs 1, 2 and 5).

To clarify the relation between long distance connectivity and the
linical measures, we correlated the mean global PLI (from 17 to 34 Hz)
ith the clinical variables listed in Table 1 by calculating Spearman

ank-order correlation coefficient (See supplementary data). None of
hese variables were significantly correlated with the PLI when using the
M group or the healthy control participants separately. When gathering
ata from both groups of participants, we found that PLI at Beta was sig-
ificantly correlated with all the clinical variables. All these correlations
ere in the same direction -higher PLI related to higher impairment-. 

.3. Microstate (MS) analyses 

We extracted 4 microstates based on the cross-validation criterion
See Fig. 2 ). The four MS accounted for the 62.0% of the Global Ex-
lained Variance (GEV), although this GEV is lower than typically re-
orted, it is a similar value to that obtained in previous research during
esting state EEG ( Seitzman, 2017 ; Britz et al., 2010 ); each MS con-
ributes to GEV in each group of participant as follows: MS1: FM =
5.3% ± 9.1; HC = 20.6% ± 8.9; MS2: FM = 12.5% ± 8.1; HC = 12.2% ±
.3; MS3: FM = 12.8% ± 8.2; HC = 11.8% ± 8.9; MS4: FM = 9.2% ± 5.3;
C = 8.5% ± 8.9. We observed that MS1 showed a similar topography

o the one described in the literature as microstate Class C ( Britz et al.,
010 ; Michel and Koenig, 2018 ). MS1 had significantly shorter values
f Occurrence and Coverage in patients with FM than in HC, while the
uration parameter was not significant, but near to significance (See
able 2 ). MS2 showed a topography similar to the one described as mi-
rostate Class C’, with no significant differences between groups. MS3
howed a similar topography to that described as microstate Class E, and
o significant differences were observed between groups. Finally, MS4
howed a topography similar to the one usually referred as microstate
lass D, again with no group differences in any of the parameters ana-

yzed. 

. Discussion 

In the present study, we investigated whether patients with fi-
romyalgia showed alterations in their electroencephalographic activity
uring open-eyes resting state. Here we pursued two novel analysis of
he EEG not previously applied to data recorded in FM. First, we mea-
ured functional connectivity between different networks; second, we
erformed broadband microstate analysis to evaluate patterns related
o spontaneous thought and neural processes that may be altered in
hronic pain. We found higher global functional connectivity in the beta
and for patients with FM, and also observed differences in microstate
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Fig. 2. Topographies of the 4 prototypes of mi- 
crostates extracted. 

Table 2 

Mean values, standard deviations, and statistical tests for duration, occurrence and coverage for each group and microstate prototype. 
Abbreviations: FM – Fibromyalgia group; HC – Healthy controls group; p: p-values after False Discovery Rate (FDR) correction. 

Microstate 1 Microstate 2 Microstate 3 Microstate 4 

Duration FM = 84.412 ± 15.48; 

HC = 92.62 ± 16.30; 

t (92) = − 2.46; p = 0.062; 

Hedge’s g s = 0.51 

FM = 88.10 ± 25.60; 

HC = 84.17 ± 10.37; 

t (92) = 0.99; p = 0.486 

FM = 91.59 ± 33.93; 

HC = 84.90 ± 16.30; 

t (92) = 1.32; p = 0.475 

FM = 83.01 ± 15.03; 

HC = 79.95 ± 16.30; 

t (92) = 1.189; p = 0.475 

Occurrence FM = 2.74 ± 0.66; 

HC = 3.09 ± 0.46; 

t (92) = − 3.02; p = 0.038; 

Hedge’s g s = 0.63 

FM = 2.87 ± 0.62; 

HC = 2.93 ± 0.47; 

t (92) = − 0.47; p = 0.690 

FM = 2.86 ± 0.59; 

HC = 2.82 ± 0.46; 

t (92) = 0.36; p = 0.716 

FM = 2.67 ± 0.66; 

HC = 2.670 ± 0.46; 

t (92) = 0.55; p = 0.690 

Coverage FM = 0.24 ± 0.09; 

HC = 0.29 ± 0.09; 

t (92) = − 2.69; p = 0.048; 

Hedge’s g s = 0.65 

FM = 0.26 ± 0.12; 

HC = 0.25 ± 0.06; 

t (92) = 0.57; p = 0.690 

FM = 0.27 ± 0.12; 

HC = 0.24 ± 0.09; 

t (92) = 1.21; p = 0.475 

FM = 0.23 ± 0.08; 

HC = 0.21 ± 0.09; 

t (92) = 1.04; p = 0.486 
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arameters between patients and controls. These results extend current
nowledge on the brain activity of chronic patients during ongoing pain
nd provide physiological markers of altered brain function in FM. 

For network connectivity analysis we first extracted six components
sing group-ICA decomposition, each one characterized by a different
opography and time course. This group-level decomposition method is
 novel and powerful tool that allows to study functional brain networks
n EEG data ( Huster and Raud, 2018 ). Subsequently we analyzed phase
onnectivity among components and found that patients with FM had
igher global connectivity values at beta frequencies ( ≃17–34 Hz). We
lso observed group differences between pairwise PLI values, especially
nvolving IC 2 and IC 3. 

Beta-band oscillations have been classically related to the activity in
otor areas ( Pfurtscheller and Lopes da Silva, 1999 ; Pfurtscheller et al.,
005 ), although recently they also have been implicated in long-range
ommunication, top-down processing, and the preservation of the cur-
ent brain state ( Spitzer and Haegens, 2020 ; Engel and Fries, 2010 ).
hese oscillations are mechanistically related to a facilitation of
etwork-level communication ( Kopell et al., 2000 ; Varela et al., 2001 ;
lavash et al., 2017 ; Donner and Siegel, 2011 ). Particularly, phase syn-
hronization at beta frequencies are thought to regulate the communica-
ion among distant neural groups, which can be used to maintain infor-
ation in working memory and facilitate the integration of distributed
rocessing ( Siebenhühner et al., 2016 ; Fries, 2015 ; Kornblith et al.,
016 ). This frequency band has also been related with feedback predic-
ions in the predictive coding model ( Michalareas et al., 2016 ; Brodski-
uerniero et al., 2017 ) and with the endogenous activation and reacti-
ation of cortical content representations ( Spitzer and Haegens, 2020 ).
ur results indicate that patients with FM show a hyper-synchronization
mong distant distributed neural circuits. As beta activity has been also
elated to the continuation of the cognitive set and the dominance of en-
ogenous top-down influences, its pathological enhancement may lead
o the deterioration of flexible behavior and cognitive control ( Engel and
ries, 2010 ). In this vein, patients with FM consistently show impair-
ents of executive function, attention, or working memory, including
oor selective and divided attention, slow information processing and
ulnerability to distraction ( Tesio et al., 2015 ; Kravitz and Katz, 2015 ;
lass, 2009 ; Teodoro et al., 2018 ). The observed abnormally high syn-
hronization among long-distance networks could be a mechanism re-
ated to the impaired attention and processing of external stimuli, and
he concomitant cognitive dysfunction reported by patients with fi-
romyalgia. Connectivity values in the beta range were significantly
orrelated with the measured clinical variables when using data from
he whole sample (FM and HC), suggesting a positive relation between
ong distance beta phase connectivity and symptom severity. Neverthe-
ess, these results should be taken with caution, since the correlations
ere far from significance when computed with the FM or the HC groups

eparately (See supplementary data). The lack of correlations in the FM
roup could be explained by the high heterogeneity of the disease and
he existence of different profiles of patients with diverse clinical mani-
estations ( de Souza et al., 2009 ; Triñanes et al., 2014 ). While FM symp-
oms are not dichotomous and everyone (either healthy controls or pa-
ients) is in a position on that continuum, distribution of scores in some
linical variables are clustered by group (See scatterplots in the supple-
entary data), and this may explain the significant correlations for the
hole sample. Overall, these results suggest that PLI is useful in dif-

erentiating between the two groups, but shows a low correlation with
pecific symptoms of the FM spectrum in patients. 

Contextualizing our results with recent research analyzing spon-
aneous magneto- and electroencephalographic activity, other previ-
us investigations have also found alterations in beta frequencies in
atients with FM. For example, González-Roldán et al. (2016) found
ncreased beta power and increased power cross-correlation between
calp electrodes located in the left hemisphere of patients. In this vein,
im et al. (2016) found beta power increase in FM, with the largest group
ifferences in the anterior insular cortex, primary motor cortex, and left
1 and S2. Nevertheless, alterations were also found in other indexes like
elta power ( González-Roldán et al., 2016 ), theta power ( Fallon et al.,
018 ; Lim et al., 2016 ), centroparietal theta synchronization ( González-
oldán et al., 2016 ) and global theta connectivity ( Choe et al., 2018 ),
r gamma power ( Lim et al., 2016 ). Although there are some common
oints, there is still little consistency in the electrophysiological indexes
bserved during resting state. These disparities may be explained by
ifferences in the characteristics of the samples and in the types of anal-
ses (e.g. power analysis at scalp or source level, different functional
onnectivity indexes). 
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Regarding microstate analysis, we found a reduction in occurrence
nd coverage of the Microstate 1, which also showed the higher global
xplained variance. This microstate exhibits an anterior-posterior to-
ography, and corresponds to the described in the literature as Mi-
rostate C ( Koenig et al., 1999 ). Similar observations were reported for
atients with dementia and panic disorder, that respectively showed
educed duration and occurrence of the Microstate C ( Kikuchi et al.,
011 ; Nishida et al., 2013 ). The microstate class C has been positively
orrelated with Blood-oxygen-level dependent (BOLD) activity in areas
ike the dorsal anterior cingulate cortex, the right anterior insula and
he inferior frontal gyri ( Britz et al., 2010 ). These areas are part of the
o-called salience network, that is related to switching between central-
xecutive function and the default mode. Among other functions, the
alience network is supposed to contribute to self-awareness through
he integration of sensory, emotional, and cognitive information. Areas
hat belong to this network, such as the insular cortex or the anterior
ingulate cortex (ACC), are also involved in the processing of nocicep-
ive input ( Tracey and Mantyh, 2007 ), and brain imaging studies fre-
uently observed functional and structural alterations over these areas
n patients with FM ( Ichesco et al., 2014 ). Therefore, the reduced dura-
ion, occurrence and coverage of this MS is consistent with the fact that
M patients show impaired performance or altered brain activity during
ognitive control tasks ( Bell et al., 2018 ; González-Villar et al., 2017b ),
rocesses that involve the activation of the insula and ACC ( Swick et al.,
011 ; Aron, 2011 ). 

The microstate C has also been related to the activation of brain
reas involved in autonomic and interoceptive processing ( Britz et al.,
010 ; Pipinis et al., 2017 ; Schiller et al., 2019 ). The reported data could
e related to the reduced attentional focus towards the interoceptive
xperience in FM -as reported by Duschek et al., that found decreased
nteroceptive awareness in this population ( Duschek et al., 2017 )-, and
s in line with the relation between reduced heartbeat perception and
ncreased pain-related affect and symptom severity ( Borg et al., 2018 ).
evertheless, our results are inconsistent with previous reports of in-
reased attention to body signals in those patients ( Borg et al., 2015 ).
inally, Ceko et al. (2015) found a reduced deactivation of fMRI re-
ponse over default-mode network (DMN) regions (posterior cingu-
ate/precuneus, medial prefrontal cortex) in patients with FM during
 working memory task, and also reduced modulation of DMN deac-
ivation caused by task demands ( Ceko et al., 2015 ). These results are
lso consistent with our previous observations of reduced modulation of
lectrophysiological indexes caused by external events in patients with
M ( González-Villar et al., 2017a, 2017b ; González-Villar et al., 2019 ).
ltogether, the evidence obtained from the connectivity and microstate
nalysis are convergent, suggesting alterations in a neurophysiological
echanism that may be related to the diminished ability to process

oth interoceptive and exteroceptive information that FM patients often
xhibit. 

One limitation of this study is related to the consumption of medica-
ion by patients, which could not be interrupted for the study and whose
ffects are difficult to identify. In addition, the cross-sectional design
oes not allow establishing causal relations between EEG features and
he clinical manifestations in FM, a complex syndrome characterized by
 plethora of symptoms (mainly chronic pain, but also cognitive and
ffective). Furthermore, the design of the study does not allow clarify-
ng whether the findings are FM-specific or could be common to other
hronic pain diseases. 

In conclusion, the present findings indicate that FM participants
how increased connectivity over different brain networks at beta band,
nd differential microstates dynamics during resting state. Although we
sed two independent approaches to analyze the spontaneous EEG data
i.e. connectivity of independent components and microstate analysis),
he group differences of both physiological outcomes are related to the
rocessing of endogenous top-down information and the minimization
f novel external input. These alterations could be related to the subjec-
ive complains about deficits in attentional processes and cognitive func-
ioning commonly reported in this chronic pain disorder. The present
esults contribute to the understanding of the alterations in the central
ervous system of patients with FM and could help in the search of EEG
iomarkers for its diagnosis. 
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