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The first test which any theory of pain must pass is that it must be able to explain 
the phenomena observed in acute pain in humans. This criterion is used to test the 
major theory of pain at present, the gate control theory of Melzack & Wall (1965, 
1982). The theory is explicit enough to be cast in mathematical terms, and the 
mathematical model is shown to explain the observations considered. It also points 
up a common misconception on the consequences of the theory, and thus demolishes 
an argument which has been used against it. A hypothesis of the origin of rhythmic 
pain is then made, and consequent testable predictions given. This is the first time 
that the gate control theory has been used to explain any quality of pain. It has 
important consequences for the treatment of such pain. Finally, the applicability of 
the gate control theory as an explanation for chronic pain is discussed. 

1. Introduction 

In this section we give a short review of  neurophysiological mechanisms which 
cause pain to be experienced and inhibited. We then consider certain observations 
which a satisfactory theory of pain must account for, and discuss various theories 
in the light of  these. In section 2 we make a mathematical model for the only theory 
which is both explicit enough to be written in mathematical terms and which gives 
reasonable explanations for the observations. We analyse this model in an appendix 
and interpret the results from a biological point of  view in section 3. In the final 
section of  the paper we discuss the results obtained. 

In the skin, muscles, joints and some viscera are receptors attached to nerve fibres. 
We shall concentrate on cutaneous sensation for the purposes of this paper. Stimula- 
tion of  the receptors causes nerve impulses to travel along these fibres to three 
systems in the spinal cord (see, for example, Willis, 1985; Ottoson, 1983). The first 
of  these is the substantia gelatinosa (SG) in the dorsal horns. The nerve cells here 
are small and connect with each other by short fibres and the longer fibres of  
Lissauer's tract, and with other cells deeper in the dorsal horns. Cells deep in the 
dorsal horns are also stimulated directly by nerve impulses from the receptor fibre 
units of  the skin, and there are cells in this area whose axons form part of  the 
ascending spino-thalamic tract, which connects with lower centres in the brain and 
which is an integral part of  the action system designed to deal with pain. The third 
system in the spinal cord reached by nerve impulses from the skin is in the dorsal 
column, the fibres of  which project to the cortex of the brain. 

We shall be concerned with three kinds of nerve fibres from the skin to the spinal 
cord. First are the C fibres, which are unmyelinated (i.e. without insulation from a 
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fatty sheath of myelin), and hence conduct impulses relatively slowly, at around 
0.25-1-25 m/sec. Second are the A-delta fibres, which are thinly myelinated, and 
conduct impulses much more quickly, at around 6-30 m/sec. Third are the A-beta 
fibres, which are heavily myelinated, and conduct more quickly still, at around 
30-100 m/sec. C and A-delta fibres are of small diameter (0.25-1-5 and 1-5 microns 
respectively), whereas A-beta fibres are large (5-15 microns). The small (C and 
A-delta) fibres connect with the SG and cells deeper in the dorsal horns whereas 
the large (A-beta) fibres connect with these and with the dorsal column as well. 
Each of these fibres is attached to a receptor in the skin, which may be a Meissner's 
corpuscle, a Pacinian corpuscle, a Ruffini or Krause end-organ or, for the great 
majority (around 60-70%), and most important for the study of pain, a free nerve 
ending. 

Any theory of pain must be able to account for the following observations: 
(i) Increased stimulation of  the small nerve fibres of  the skin usually increases 

pain (e.g. van Hees & Gybels, 1972; Hallin & Torebj~Srk, 1973). 
(ii) Increased stimulation of  the large nerve fibres may increase pain transitorily, 

but in the longer term may relieve it (e.g. Wall & Sweet, 1967; Chapman et 
aL, 1976). (This is the basis for rubbing the skin where it has been injured 
in order to relieve pain.) 

(iii) Pain relief may be achieved by electrical stimulation of the grey matter of 
the midbrain (e.g. Hosobuchi et al., 1977). 

(iv) It is sometimes the case that injuries which would normally cause great pain 
cause little or no pain at all, or that the onset of  pain is delayed (e.g. battle 
injuries (Beecher, 1959) or injuries requiring treatment in an emergency 
clinic (Melzack et aL, 1982). 

(v) It is sometimes the case that anticipation of pain is sufficient to raise the 
level of  anxiety and thereby the intensity of  perceived pain (e.g. Hall & 
Stride, 1954). 

It is reasonable to ask why we have chosen these observations to address rather 
than any others. We used the following criteria: (a) the observations were on human 
subjects, and (b) only effects which did not involve long term changes in the nervous 
system were considered. The reason for this is that in order to test the theory of 
pain we would have to make assumptions about these changes, and we would be 
unable to tell whether any negative results were due to errors in these assumptions 
or in the theory itself. It follows that we have not considered any observations on 
the development of chronic pain states or on neuropathological conditions. 

Before 1965, there were two main types of theories of pain. For a more complete 
review see Meizack & Wall (1965, 1982), Nathan (1976) and Willis & Coggeshall 
(1978). The first was specificity theory (von Frey, 1894), which states that pain is 
produced by stimulating pain receptors thus causing nerve impulses to follow 
pain-specific pathways to a pain centre in the brain. The pain receptors are the free 
nerve endings on C and A-delta fibres. Specificity theory in its simplest form thus 
proposes that pain felt is a direct consequence of  the number of pain fibres being 
stimulated, and therefore it is difficult to explain observations (ii), and especially 
(iii) to (v), on this basis. The second theory of  pain was pattern theory (Goldscheider, 
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1894; Weddell, 1955; Sinclair, 1955), which recognises that the spatio-temporal 
pattern of the impulses from the skin are important. The impulses reaching the 
spinal cord are thus a coded message which is decoded by the central nervous 
system. In its simplest form this theory fails to take into account the physiological 
specialisation of the peripheral nerve fibres, but its greatest failing from our point 
of view is that it gives no clue as to how the decoding mechanism works. 

Other theories of  pain had elements of both specificity theory and pattern theory. 
Head (1920), followed by Foerster (1927), Lewis (1942), Bishop (1959) and Noor- 
denbos (1959), proposed that nociceptive impulses are carried in a slowly conducting 
system of small fibres and that there is a specific rapidly conducting system of large 
fibres which inhibits synaptic transmission in this system. This goes some way 
towards accounting for observation (ii) but still proposes a direct relationship 
between a stimulus applied at a certain time and the sensation felt at that time, so 
that there are still difficulties in accounting for observations (iii) to (v). In 1965 
Melzack & Wall published their gate control theory of pain, which follows on from 
these so-called sensory interaction theories. The differences between their theory 
and previous ones were (a) they proposed an explicit mechanism for the inhibition 
of the slowly conducting nociceptive system by the fast conducting one, and (b) 
they proposed that descending controls from the brain could also moderate the 
passage of  nociceptive signals. The explicit mechanism attracted a great deal of 
criticism on physiological grounds (see, for example, the review by Nathan, 1976), 
some of which was dealt with in a major revision of the theory by Melzack & Wall 
in 1982. There is no doubt that the theory is a gross over-simplification of  the actual 
mechanism, but nevertheless provides a useful starting point and, so far, has not 
been replaced. The inclusion of descending controls makes it possible to account 
for observations (iii) to (v) by allowing that the brain can consciously or automati- 
cally inhibit or promote transmission of nociceptive impulses up the spinal cord, 
and thus reduce or augment the pain being experienced. The gate control theory of 
pain is easiest to explain using a diagram. 

It was stated above that there are in the area of the dorsal horns of the spinal 
cord at deeper levels than the substantia gelantinosa (SG), cells which receive input 
from the SG, cells which receive input direct from the skin, and cells which transmit 
output to the action system. It is proposed in the gate control theory of pain that 
the cells in this region which transmit to the action system are the same as the cells 
which receive input from the skin and the SG, the so-called central transmission 
(T) cells. The gate control system is made up of these cells and the cells of the SG. 
The output from the system is via the T-cells only, and determines the degree of 
pain felt. The inputs to the system come from large and small afferent fibres (from 
the skin, for example) and from the brain. The small afferent nerve fibres excite the 
T-cells directly (raising their potential towards the threshold where they fire) and 
also excite cells in the SG which excite the T-cells. This accounts for observation 
(i), that increased stimulation of the small fibres in the skin increases pain. The 
large afferent nerve fibres excite the T-cells directly but also excite cells in the SG 
which inhibit the T-cells (lowering their potential from their firing threshold). If 
there is a delay in the second of these effects then stimulation of  large afferent nerve 
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FIG. 1. T h e  gate control theory of pain (adapted from Melzack & Wall (1982), who do not specify 
the site of action of the cognitive control). (Plus signs) denote excitation, (minus signs) inhibition. T h e  
cognitive control may be either excitatory or inhibitory. The impulse frequencies x in the various pathways 
of the system are also shown. 

fibres first causes an increase in the rate of  firing of the T-cells (due to the direct 
excitation) and then a decrease (due to the inhibitive effect from the SG). Thus 
pain would increase transitorily and then decrease, in accordance with observation 
(ii). The effect of the input to the gate control system from the brain is inhibitory 
or excitatory, and acts either directly on the T-cells or on the inhibitory SG cells, 
or both, but the physiological evidence seems to favour action via the superficial 
layers of  the dorsal horn (see, for example, Fields & Basbaum, 1984). For this reason 
we take the action to be via the SG, but the results would be substantially unaltered 
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if we took it to be via the T-cells. The input to the brain comes both from the T-cells 
and directly from the large afferent fibres of  the skin via the dorsal column. The 
input from the T-cells feeds into a centre in the mid-brain which automatically 
activates a descending inhibitory control, which is assumed to act through the 
inhibitory SG cells. Artificial stimulation of the correct area of  the mid-brain would 
have a similar effect, and this could explain observation (iii). The input from the 
large afferent fibres feeds into a centre in the higher brain which activates a cognitive 
control. We shall assume that this also acts through the inhibitory SG cells. It may 
be either inhibitory (by exciting these cells) or excitatory (by inhibiting them), 
depending on psychological factors. This could explain observations (iv) and (v). 

2. The Mathematical Model 

The mathematical  model is best explained by referring again to Fig. 1, which 
shows the firing frequencing x in each of the pathways due to a firing frequency xs 
in the small fibres and x~ in the large fibres of  the relevant area of  skin. We shall 
assume that the frequency of the outputs from the cognitive control and the 
descending inhibitory control are strictly monotone increasing functions of  the 
inputs, that is 

x~ = ~ ( x , ) ,  xc = ~ ( x , ) ,  (1 )  

where q~ and t~ are increasing functions satisfying ~ ( 0 ) =  0, ~ ( 0 ) =  0. 
We shall consider the inputs and outputs to one particular T-cell and assume that 

neighbouring T-cells are similar. We shall also assume, for simplicity in the exposition 
only, that each T-cell is stimulated by one large and one small afferent nerve fibre 
from the skin and one inhibitory and one excitatory SG cell. Allowing more than 
one of any of  these would not change the results. Our modelling is in the spirit of  
Wilson & Cowan (1972). We shall thus work with the slow potentials I/, of  the 
T-cell, V~ of the inhibitory and Ve of the excitatory SG cell. The frequencies x,, x~ 
and xe at which these cells fire are functions of  the slow potentials, 

x, = f , ( v , ) ,  x,=f,(v~), Xe = f , ( V ~ ) .  (2 )  

The exact form of the functions f could be modelled, but all we shall require is 
that they are of  the form shown in Fig. 3 and are zero for values of  V below a 
certain threshold and strictly monotone increasing above that threshold. The poten- 
tials V of the cells depend on the frequencies of  impulses arriving at their dendrites 
from various sources, and on the dendrites and the synaptic junctions themselves, 
whose properties we shall assume to be constant over the time scales which we are 
considering. The effect of  an input frequency xj to an excitatory or inhibitory synapse 
of  a cell of  potential Vk will be to raise it by qbjk, where 

¢Pjk = c~jk f '  hjk(t--r)g[xi( 'r)] dr  (3) 
d -  c~ 

(an der Heiden, 1980), where ark = 1 for an excitatory and - 1  for an inhibitory 
synapse, hjk is a positive monotone decreasing function and gjk is a bounded strictly 
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monotone increasing function satisfying gjk(O)----O. We shall take the simplest form 
for h~k, 

hj~(t) = - -  exp - (4) 

which represents a simple RC-network with ~'k the time constant of  the membrane. 
The total effect of  inputs to cell k gives 

V~ = V~o+Y~ %k, (5) 
J 

where Vko is the resting potential of  the cell. This assumes that the system is linear 
and is a good approximation at least for small variations in the variables. The 
assumption may be relaxed without qualitatively affecting the results. Differentiating 
eqn (5) using eqns (3) and (4) and rearranging 

"rk Vk = --( Vk -- Vko) + E ajkgjk(Xj), 
J 

where the sum is over all inputs j to the cell k. For our system we obtain the 
three equations 

r ,~  = - (  V, - V~o ) + gt,(x,) + gd,(Xd) + ac,gc,(Xc), (6) 

%Ve = - (  Ve - Veo)+g,,(X~), (7) 

r,l?, = - (  V, - V,o) + g,,(xs) + g, (xt) + ge,(x,) - g,,(x,). (8) 

where aci e [ -1 ,  1] and is positive for an excitatory, negative for an inhibitory and 
zero for no input from the cognitive control. 

Substituting in from eqns (1) and (2) 

r i V  i = - ( V  i - Vio)+gl i (x t )+gdi{ t .p[ f , (V , )]}+~ci[d4(x t )]  ] 

• r~,', = - ( V , -  V~o)+g.~(x,) I . (9) 

r,12, = - (  V, - V,o) + gs,(x,) + g,,(x,) + g,,[f,(  V~)J - g,,[f,( V~)] 

These are three equations for the three unknown potentials V~, V~ and V, in terms 
of  the known inputs x, and xt, and represent our mathematical model of  the gate 
control theory of  pain. 

3. Results 

The model is analysed in the Appendix. In this section we shall summarise the 
results of  that analysis and interpret them from the biological point of  view. 

The first result of  biological interest is lemma 5. This says that if steady pain is 
being felt and the stimulation of  small fibres is increased slightly without any other 
changes occurring, then after a short time the pain felt will still be steady and will 
be at a higher intensity. This accounts for observation (i) of  the introduction. 
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Second, lemma 6 states that if no cognitive control is being exerted, steady pain 
is being felt and the stimulation of large fibres is increased slightly without any 
other changes occurring, then after a short time the pain felt will still be steady but 
may be at a higher or a lower intensity. In the second case it may increase transitorily 
before declining to the lower level. Which of  these occurs depends on the details 
of the model and the levels of stimulation of  large and small fibres being considered. 
The gate control theory can therefore account for various consequences of  an 
increase in the stimulation of  the large fibres. The possibility of a resulting transitory 
increase followed by a decrease in pain is interesting in view of observation (ii) of  
the introduction. It is also interesting that Nathan & Rudge (1974) found that 
stimulation of large fibres sometimes does and sometimes does not reduce pain 
caused by small fibres, and used this as an argument against the gate control theory. 
We have shown here that the theory can easily cope with such findings, but clearly 
more work needs to be done on the effects of  large fibre stimulation on pain to 
elucidate the details of  the phenomenon. 

Third, lemma 7 says that increasing the input from the midbrain (the descending 
inhibitory control) reduces the steady state value of the T-cell potentials. On the 
assumption that the system is at a steady state this implies that any pain felt is 
reduced, and this could account for observation (iii) of  the introduction. 

Fourth, lemma 8 says that switching on an inhibitory (or excitatory) cognitive 
control reduces (or increases) the steady state T-cell potentials. Again assuming 
that the system is at a steady state this implies that any pain felt is reduced (or 
increased), and this could account for observations (iv) and (v) of the introduction. 

The mathematical analysis raises the intriguing possibility of oscillatory solutions 
of  the equations (see the remark after lemma 4). If such a solution occurs, then the 
potential 11', of  the T-cells oscillates, so that any pain increases and decreases 
rhythmically. Could this be the origin of throbbing and other rhythmic pain? If  so, 
the model predicts that, assuming there is no change in the descending controls, 
the transition from steady pain to rhythmic pain can only be made by a sudden 
change in the firing frequencies in the large or small fibres. It would be interesting 
if this prediction could be tested experimentally. 

4. Discussion 

The mathematical model of  the gate control theory of  pain proposed in this paper 
(and hence the gate control theory itself) can account for all the observations on 
acute pain in humans which are presented in the introduction. One of  the purposes 
of setting up a mathematical model was to demonstrate this (if possible). However 
there are other purposes which are just as, if not more, important. 

First, a mathematical model may point up misconceptions on the consequences 
of  the gate control theory which have arisen. This seems to be the case on the 
question of  the effects of  stimulation of  large fibres when pain is present, where it 
has been assumed that the gate control theory predicts that pair  will ultimately 
always be reduced. In fact the theory allows either augmentation or reduction 
(possibly preceded by transient augmentation), depending on the details of  the 
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model and the initial firing frequencies in the large and small fibres. This demolishes 
one of the arguments against the theory but of course raises many questions which 
need to be investigated experimentally. The reason for the equivocal findings is that 
there are two opposing effects at work. One is the direct stimulation of T-cells by 
large afferent fibres, which tends to raise T-cell potential, and hence to increase 
pain. The second is stimulation of the inhibitory SG cells, which tends indirectly 
to lower T-cell potential, and hence to decrease pain, and which may be a slower 
effect. The final result depends on the relative magnitudes of these two effects and 
this may depend on the initial potentials in the various cells of the system. 

Second, the analysis of a mathematical model may suggest explanations for 
phenomena previously unexplained by the gate control theory. Thus we have 
suggested that rhythmic pain may be the result of an oscillation of potentials in 
T-cells and inhibitory SG cells. The proposed mechanism is as follows: 

(a) High T-cell potentials imply a high frequency of signals to the brain, activating 
a descending control mechanism. 

(b) This increases the potential in the inhibitory SG cells, resulting in an increased 
firing rate in these cells. 

(c) This lowers the T-cell potentials, thus reducing the frequency of signals to 
the brain and deactivating the descending control. 

(d) Finally this allows the inhibitory SG potential to fall and therefore the T-cell 
potential to rise. 

This cycle is then repeated, and results in rhythmic pain as the T-cell potential and 
thus the T-cell firing rate rises and falls. 

It must be emphasised that we are concerned here only with the fact that the 
T-cell potential, and hence the pain, is oscillating periodically. Depending on the 
frequency of these oscillations and the magnitude of the potentials, such pain could 
be characterised as flickering, quivering, pulsing, throbbing, beating, or pounding. 
These words describing temporal qualities of pain are found in the McGill Pain 
Questionnaire (Melzack, 1975). Other sensory aspects of the pain and its affective 
and evaluative properties are not considered, and indeed it is a shortcoming of the 
gate control theory that it does not seem to be able to explain such differences in 
pain. However the ability to explain these temporal qualities of pain is a property 
of the gate control theory which has not been recognised before, and which is 
extremely important in view of the number of patients suffering from clinical pain 
syndromes who experience such l~ain. In a study by Dubuisson & Melzack (1976), 
35 out of 58 patients suffering from arthritic pain, disc disease pain, toothache, 
cancer pain, phantom limb pain and post-herpetic pain reported rhythmicity, a 
proportion of over 60%. However our model was set up as a model of acute pain 
whereas most of these patients were suffering from chronic pain. We return to this 
point below. 

Third, a mathematical model may make predictions which can be tested experi- 
mentally. Here we state that, assuming descending controls do not change, rhythmic 
pain cannot arise from steady pain by a slow increase in firing frequencies in 
large and small fibres; it must occur as a result of sudden changes in the firing 
frequencies. 
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The fourth and most important reason for setting up a mathematical model of 
acute pain is to provide an explanation for or at least a basis for extension to theories 
of neuropathies and chronic pain, which are of course clinically far more important 
than acute pain. In certain cases chronic pain persists long after the injury producing 
it has healed. There are three possible explanations for this. First, it could be that 
chronic pain is associated with plastic changes in the nervous system. Second, it 
could be that psychological factors result in the cognitive control being more 
excitatory (or less inhibitory) than would otherwise be the case. Third, it could be 
that one input into the control system (i.e. one value for the firing frequencies in 
each of the large and the small fibres) could result in more than one possible output 
from the T-cells, depending on the history of the system. Thus an input which before 
injury had resulted in no pain could after injury result in considerable pain. 
Mathematically this corresponds to two solutions of the differential equations, and 
we have shown that the only way this can happen in our model is if one of the 
solutions is oscillatory, reminding us of the reverberatory circuits put forward as a 
theory of chronic pain by Livingston (1943). In this case it can be shown that the 
T-cell potential is sometimes higher and sometimes lower than in the steady state, 
so that if the steady state is a painless state then the oscillatory state must be painless 
at least in part of its cycle, but could result in pain appearing and disappearing 
periodically. Such pain could be treated by a temporary local anaesthetic. The T-cell 
potential would then be reset from the oscillatory solution to zero, a steady solution 
of  the differential equations, while the anaesthetic was working, and would remain in 
a painless steady state rather than the painful oscillatory state when the anaesthetic 
wore off. It is often the case in clinical pain syndromes that temporary anaesthetisa- 
tion produces prolonged relief of  pain, e.g. Livingston (1943) and Bonica (1984). 
A question which arises from our analysis is whether this is more likely to happen 
when the pain is rhythmic. If  so, our analysis leading directly from the gate control 
theory provides a possible explanation for the effectiveness of  the treatment. This 
kind of mechanism has been hinted at before. To quote from Bonica (1984), "it has 
been suggested that to block off sensory input for several hours stops the self- 
sustaining activity of  the neuron pools in the neuraxis which may be responsible 
for some chronic pain states". Treatment by temporary local anaesthetic may be 
advantageous for any rhythmic pain, even when the pain does not appear and 
disappear periodically. However, in this case we would expect the treatment to 
result in steady pain more intense than that at the low point of the cycle but less 
intense than at the high point. This may be more bearable than the original pain. 
We illustrate this diagrammatically in Fig. 2. 

However, chronic pain is not always rhythmic, and therefore this mechanism 
cannot be the only way it can be produced. It seems certain that both psychological 
factors and plasticity of the nervous system have a role to play. Psychological factors 
have been incorporated into our model but plastic changes have not. This would 
involve progressive changes in some of the parameters of the system, possibly to 
simulate the unmasking of  normally ineffective synapses in the spinal cord in the 
event of damage (Wall, 1984). Clearly more work needs to be done in this important 
area. 
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FIG. 2. The results of  a temporary local anaesthetic in the case of rhythmic pain. ( ~ )  indicates the 
time course of  the T-cell potential (corresponding roughly to pain intensity), when the pain is rhythmic, 
and ( ) the potential after a temporary local anaesthetic has worn off. (- - -)  represent possible levels 
above which pain is felt. In (a), pain is relieved completely, whereas in (b) its intensity is reduced from 
its maximum previous intensity, possibly making it easier to bear. 

Let us therefore summarise our main results. First, the gate control theory can 
explain many observations on acute pain. It does not imply that increased stimulation 
of the large fibres of  the skin always results in a reduction in pain. It can explain 
rhythmicity in pain, and our analysis suggests a possible experiment to test this 
explanation. It also suggests that a possible treatment to alleviate or cure rhythmic 
pain is a temporary local anaesthetic. Finally, we point out that to obtain a theory 
of  chronic pain the gate control theory will have to be augmented by a theory 
describing plastic changes in the nervous system. 
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APPENDIX 

Analysis of the Model 

We consider the eqns (9) for the unknown potentials V~, Ve and t/, in terms of  
the known inputs xs and x~, namely 

r,V,- = - (  V~ - V~0) + gt,(x,) + ga,{~0Ef,( V,)]} + ac,gc,[tb(x,)], 

7e('e = - ( v e -  Veo)+ g,e(X~), 

7,(', = - ( V ~ -  V,o)+ gs,(xs)+ g,(xt)+ get[fe( V~)]-g,,[f,( V~)], 

where ac~ c [ - l ,  1 ]. In this appendix we prove or indicate the proof of several results 
on this system which are necessary for the discussion of the model in the body of  
the paper. We shall always assume the following hypotheses. 

(F) The functions f~, fe and f, which we shall take for simplicity to be in CI(R, R ÷) 
are zero for values of  their arguments below a certain threshold and strictly 
monotone increasing above that threshold. 

(G) The functions gjk for any suffices j and k are bounded strictly monotone 
increasing functions in C~(R +, R ÷) satisfying gjk(O) ---- O. 

(H) The functions q~ and 0 are strictly monotone increasing functions in 
CI(R ÷, R ÷) satisfying ~0(0) = 0, tb(0) = 0. 

LEMMA 1. Solutions of  system (9) with bounded initial conditions are bounded. 

Proof. Since the gjk are bounded functions it is immediate that the set 
{(V~, Ve, V , ) ] - ~ <  V~< ~ , - ' ~ e  < Ve< IT"e,- V, < V <  ~'~} is positively invariant for 
any V~, V~, V, sufficiently large, and the result follows. 
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LEMMA 2. For given xt. xs and aci the system (9) has a unique steady state 
( VT, V*, V*). 

Proof. Clearly V* is given uniquely by V* = Veo+g,e(Xs), SO it remains to satisfy 

V/-  gd,{q~[f,( Vt)]} = V~o+ gt,(x,) + ac,gc,[O(x,)], (A1) 

g,t[f~(V~)]+ E = V,o+g.,(x~)+g,(xt)+ge,{fe[V~o+g~,(xs)]}. (A2) 

Let us define G~ by G~(E)  = gd,{q~[ft(E)]}. G2 by G2(E)  = g, ,[f i(E)] ,  c, by 

c~(xt; a~,) = V~o+ g~,(xt) + a~gc,[~(xt)], (A3) 

and c2 by 

c2(xl, x.)= Vto+g.,(Xs)+gtt(Xt)+g.,{f~[Veo+gse(Xs)]}. (A4) 

Then the equations become 

E - G,(1/,) = c,, (A5) 

G2(V~) + I/, = c2. (A6) 

Using the monotonicity, boundedness, and threshold properties in (F), (G) and (H) 
then G~ and G2 are monotone increasing bounded functions, with thresholds below 
which they are zero. Thus for fixed xs and x~ the first of  these equations gives V~ as 
an increasing function V, such that V~ tends to a constant as V,-> co and V~ is 
constant for V, < V,.,hr, and the second gives V, as a decreasing function of  V~ such 
that Vt tends to a constant as V~-->co and I/, is constant for V~< V~,,h, (see Fig. 3). 
This is sufficient for the existence and uniqueness of a steady state solution. 

[•ftthr 

Vi, thr V,. 

FIG. 3. The graphs of eqns (A5) and (A6). The intersection represents the unique steady state of the 
model. 

vt 
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LEMMA 3. The unique steady state is asymptotically stable. 

Proof. T h e  eigenvalue equation is given by 

where prime denotes differentiation and an asterisk denotes evaluation at the steady 
state. By the monotonicity properties G~*G'2 ~ > 0 so that the eigenvalues all have 
negative real part  and the steady state is asymptotically stable. 

LEMMA 4. Any solution of eqns (9) with bounded initial conditions either is or 
tends to the steady state solution or is or tends to a periodic solution. 

Proof. The  second of eqns (9) implies that Ve--> V* as t--,oo, so the system 
is essentially two-dimensional.  The results then follows from lemma 1 and the 
Poincar6-Bendixson theorem. 

R e m a r k  A limit cycle solution exists if the functions in eqns (9) are chosen 
appropriately.  Then if the system (9) is in a steady state and xt and xs are varied 
slowly, it remains in a steady state, by lemma 3. However if xs or xt are varied 
quickly it is possible that the system may tend to the limit cycle solution. 

LEMMA 5. I f  the system (9) is in a steady state with V, = V* and x~ is increased 
slightly from x* to x** while keeping xt and aci fixed, then it tends to a steady state 
with V, = V**>  V*. 

Notation. We shall use an asterisk to denote evaluation at the original steady 
state, a double asterisk to denote evaluation at the new steady state, 8V* = V** - V* 
and similar expressions for other variables, and a dagger to denote evaluation at 
some point between the two steady states, so that for example G't t denotes G'~(vt) ,  
where V~ ~ (V*, V**). 

Proof. The first part of  the statement follows from lemma 3 and the continuity 
properties of  the system. For the second, from eqns (A5) and (A6) we have 

v, - G~(v,*)  = c*,  

G2(v ,* )  + v,* = c*,  

v * *  - G I ( v * * )  = c,**, 

G2( V * * ) +  V** = c**. 

Hence, using the mean value theorem for GI and G2 

aV* G't:~" * ac*, - -  I u V t  = 

G~to , 2 o Vi + a V* = ac*, 

aC *2 -- ot2ttSc *l (A7) 
a v * -  

1 + r : t t  r-2Jr 

Now G'l* and G~ t are non-negative, and from eqns (A3) and (A4), 8c* = 0  and 
t~c* > 0. It follows that t~V* > 0 as required. 
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LEMMA 6. I f  the system (9) with aci = 0 is in a steady state with V, = V* and x, 
is increased slightly from x* to x** while keeping x~ and aci fixed, then it tends to 
a new steady state with 1/, = V**, where V** may be greater than or less than V* 
depending on the properties of  G2 and the parameter  values considered; in fact 

sgn 3 V* = sgn [(g** - g*) - G'*(g** - g*)]. (A8) 

Moreover,  if 3 V * < O  and r,<< ri, then V, initially increases transitorily before 
decreasing. 

Proof. The first part of  the statement follows from lemma 3 and the continuity 
properties of  the system. For the second, the eqn (A7) still holds, where 

6e* = g , ( x ** )  - g, (x*) > 0, 

~c* = g , ( x * * )  - g , ( x * )  > O, 

so that ~V* = [ ( g * * - g * ) -  G ~ * ( g * * - g * ) ] / ( 1  + G'I*G'2*) and the result follows. 
Finally, if r, << ri, then V, can respond to changes much more quickly than V,, so 
that V, increases from V* to V*+ 8c* before decreasing to V**. 

Remark.  I f  V* and V** are both below the threshold value V~.,hr, then G2(V~) = 0 
for all V~e(V*, V**) so that G~*=0. Thus in this case 8 V * > O .  This does not 
necessarily imply an increase in pain since V* and V** may both be below V,,,h,. 
If  V* and V** are both above V~,,hr, then G~,*(V~) > 0, and the sign of ~V* may be 
positive or negative. Two limiting cases are of  interest. The first is if g * * - g *  is 
much greater than g** - g*, when ~V* > 0, and the other is if g** - g* is much less 
than g~**-g*,  when 8 V * < 0 .  The behaviour  may be different for different ranges 
of  xl (or of  x~); this depends on the details of  the model. 

LEMMA 7. I f  the system (9) has a steady state with V, = V* and the function go 
is replaced by ff satisfying i f ( x ) >  q0(x) for any x ~ R ÷, then the new system has a 
steady state with V, = V**-< V*. The inequality is strict if V* is above the threshold 
value for V,. 

Proof. Define (~ by (~  = gai ° ~ ° f,, then we have 

v*- G~(v*) = c* 

G2(v,*) + v,* = c*, 

v,** - ~ , ( v * * )  = c** = c*, 

G d  v**)  + v**  = c~** = c*, 

so that 

v**  - G, (V**)  = c* - [ ~ , ( v , * * )  - G,(  V,**)]. 

Hence, using the mean value theorem for G1 and G2, and solving for 8V* as in 
the proof  of  lemma 5, 

a v *  = G ~ * ( G * * -  G**) 
t t  i t  1 + ( ; 2  Gl 

and the result follows. 
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LEMMA 8. I f  the system (9) has a s teady  state with Vt = V* when c~ci = 0, then it 
has a s t eady  state with Vt = V * * -  V* when  ac~ = 1, and  with Vt = V** >- V* when  
ac~ = - 1 ,  for  fixed va lues  o f  x~ and  x~. The  inequa l i t i es  are  str ict  if  e i ther  V* or  V** 
is above  the th re sho ld  va lue  for  V~. 

Proof. From eqn (A3) 6c* = gc~[~(x*)] > 0 in the first case and  ~c* = -gc~[~(x*)]  < 
0 in the second  case, and  f rom eqn (A4) 6c* = 0, so the result  fo l lows f rom eqn 
(A7) and  the m o n o t o n i c i t y  p roper t i e s  o f  G~ and  (32. 


