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Abstract Pain modulatory circuitry in the brainstem exhibits
considerable synaptic plasticity. The increased peripheral
neuronal barrage after injury activates spinal projection
neurons that then activate multiple chemical mediators
including glutamatergic neurons at the brainstem level,
leading to an increased synaptic strength and facilitatory
output. It is not surprising that a well-established regulator of
synaptic plasticity, brain-derived neurotrophic factor (BDNF),
contributes to the mechanisms of descending pain facilitation.
After tissue injury, BDNF and TrkB signaling in the brainstem
circuitry is rapidly activated. Through the intracellular
signaling cascade that involves phospholipase C, inositol
trisphosphate, protein kinase C, and nonreceptor protein
tyrosine kinases; N-methyl-D-aspartate (NMDA) receptors
are phosphorylated, descending facilitatory drive is initiated,
and behavioral hyperalgesia follows. The synaptic plasticity
observed in the pain pathways shares much similarity with
more extensively studied forms of synaptic plasticity such as
long-term potentiation (LTP) and long-term depression
(LTD), which typically express NMDA receptor dependency
and regulation by trophic factors. However, LTP and LTD are
experimental phenomena whose relationship to functional
states of learning and memory has been difficult to prove.
Although mechanisms of synaptic plasticity in pain pathways
have typically not been related to LTP and LTD, pain
pathways have an advantage as a model system for synaptic
modifications as there are many well-established models of
persistent pain with clear measures of the behavioral

phenotype. Further studies will elucidate cellular and molec-
ular mechanisms of pain sensitization and further our
understanding of principles of central nervous system
plasticity and responsiveness to environmental challenge.
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Signal transduction

After injury, the pain we perceive reflects only partly the
level and intensity of a noxious stimulus as it is also
modulated by circuitries in the central nervous system
(CNS). In addition to well-documented inhibitory control,
pain processing can be vigorously facilitated by CNS
circuitry, a process that contributes to the development of
chronic or persistent pain conditions [1–4]. Consistent with
this view, recent studies point out that abnormal pains after
injury are linked to an enhanced neuronal activity within
CNS structures involved in pain modulation. The increased
excitability in the pain modulatory circuitry is dynamic and
involves activation of chemical mediators including excit-
atory amino acids and their receptors, recruitment of
intracellular signaling transduction cascades, and long-
lasting changes in synaptic efficacy [2]. This activity-
dependent plasticity in the pain modulatory circuitry is
complementary to mechanisms of hyperexcitability in
spinal dorsal horn neurons as well as exhibiting similarity
to plasticity observed in hippocampal synapses involved in
experimental phenomena such as long-term potentiation
(LTP) and long-term depression (LTD) that are thought to
mimic functional states of learning and memory [5]. This
review focuses on cellular and molecular mechanisms and
behavioral outcome of inflammation-induced neuronal
hyperexcitability in brainstem pain modulatory circuitry.
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Evidence will be provided for a critical contribution of
brain-derived neurotrophic factor (BDNF), a member of the
neurotrophin family, and its interaction with N-methyl-D-
aspartate (NMDA) glutamate receptors, to synaptic plastic-
ity and descending pain facilitation.

Pain Modulatory Circuitry and Behavioral
Hyperalgesia

Multiple brain sites and pathways are involved in descending
pain modulation, ranging from the cerebral cortex to the
caudal medulla [6, 7]. The most well characterized endog-

enous pain modulatory pathway involves a circuitry linking
the midbrain periaqueductal gray (PAG), rostral ventrome-
dial medulla (RVM) and the spinal cord (Fig. 1a). Mainly
utilizing animal models of transient nociception, earlier
studies found pain inhibitory actions of the brainstem
descending circuitry [6, 7]. The most sensitive sites for the
analgesic action of morphine are located in the PAG and the
adjacent hypothalamic periventricular area [8]. Focal brain
stimulation of the PAG produces sufficient analgesia to allow
surgery in rats without the use of chemical anesthetics [9].
Importantly, stimulation of the PAG activates a normal
function of the brain: pain inhibition [10, 11]. Convergent
lines of evidence indicate that PAG stimulation-produced

Fig. 1 a The descending pathways involved in pain modulation. The
PAG in the midbrain has efferent projections to the RVM and RVM
neurons directly project to the spinal dorsal horn where nociceptive
input is initially processed. Primary afferent dorsal root ganglion
(DRG) neurons transmit peripheral noxious input to the spinal dorsal
horn. Supraspinal projecting dorsal horn neurons also issue collaterals
terminating in pain modulatory structures and the PAG also receives
input from forebrain structures including cerebral cortex and hypo-
thalamus. Inflammation induces peripheral sensitization associated
with an increased barrage of primary afferent activity and increased
activation of dorsal horn neurons, followed by central sensitization
and behavioral hyperalgesia measured with nocifensive withdrawal
responses. Spinal ascending input activates neurons at the brainstem
level leading to expression of activity-dependent plasticity. In addition
to BDNF released from primary afferent terminals, inflammation
upregulates BDNF in PAG neurons. BDNF is released from terminals
in the RVM (enlarged in b), resulting in an enhancement of
descending facilitation that contributes to spinal dorsal horn neuronal
hyperexcitability and a time-dependent maintenance of behavioral
hyperalgesia. The brainstem descending pathway also produces
descending pain inhibition. (Adapted from 80, Copyright 2006 by
the Society for Neuroscience, with permission). b Simplified

schematic diagram illustrating coupling of BDNF–TrkB signaling
pathways with NMDA receptor activation in the RVM. A PAG–RVM
BDNF-containing synapse is enlarged from dashed rectangle in a.
The release of BDNF in the RVM from terminals of PAG neurons
after injury can be mimicked by electrical stimulation with TBS.
BDNF binds to TrkB and leads to autophosphorylation (P) of several
tyrosine residues in the cytoplasmic domain of the TrkB receptor.
Phosphorylation of Y785 on TrkB recruits phospholipase C-gamma
(PLC), followed by generation of inositol trisphosphate (IP3) and
DAG. Through activation of IP3 receptors on endoplamic reticulum
(ER), Ca2+ is released from internal stores. DAG and Ca2+ activate
PKC isoforms that phosphorylate serine residues in the C-terminus of
the NMDA receptor NR1 subunit. The increased intracellular Ca2+

may stimulate the proline-rich tyrosine kinase 2 (Pyk2)-Src pathway
that leads to tyrosine phosphorylation of the NR2 subunit of the
NMDA receptor. Phosphorylation of NMDA receptors will potentiate
the NMDA receptor channel gating and increase synaptic strength.
Phosphorylation of tyrosine residues in TrkB also creates docking sites
for a number of adaptor proteins and activation of phosphatidylinosito-
3-OH kinase (PI3K) and MAPK cascades, leading to increased
transcriptional activity. These events contribute to amplification of
synaptic input, central sensitization, and the development of hyperalgesia
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analgesia is relayed through other brainstem nuclei [12]. The
RVM has been identified as the premier relay station
between the PAG and spinal dorsal horn. The RVM consists
mainly of the midline nucleus raphe magnus and the
adjacent gigantocellular reticular nucleus, alpha part [6,
13]. Brainstem descending pathways linking the PAG, the
RVM, and the spinal cord constitute a major mechanism in
descending inhibition of pain transmission.

Recent studies have focused on animal models of
persistent pain and revealed that the output of pain
modulatory circuitry also exerts a facilitatory effect on
nociceptive transmission, particularly after injury. Animals
exhibit exaggerated nocifensive behavior after peripheral
tissue or nerve injury, described as hyperalgesia (an
increased response to noxious stimulus) and allodynia (a
nocifensive response to a normally nonnoxious stimulus).
Hyperalgesia/allodynia also develops in tissues distant from
the site of injury, so-called “secondary hyperalgesia” [14].
Emerging evidence indicates that descending facilitation
not only parallels inhibition but also can be a driving force
for the development of behavioral hyperalgesia/allodynia
[1, 15]. Local anesthesia of RVM attenuates mustard oil-
induced hyperexcitability of spinal dorsal horn neurons [16]
and behavioral hyperalgesia [17]. Lesions of the RVM
suppress formalin-induced nocifensive behavior [18], in-
hibit secondary hyperalgesia produced by topical applica-
tion of mustard oil [15], and attenuate (secondary)
mechanical hyperalgesia after masseter muscle inflamma-
tion induced by complete Freund's adjuvant (CFA) [19].
The same phenomenon occurs in models of neuropathic
pain. Suzuki et al. [20] show that descending facilitatory
control of mechanically evoked responses is enhanced in
dorsal horn neurones after nerve injury. The tactile
allodynia and cold hypersensitivity after nerve injury
depends upon activation of bulbospinal descending facili-
tatory pathways [21, 22]. These observations point to an
ascending–descending loop that is activated in response to
prolonged stimulation to facilitate spinal nociceptive pro-
cessing, leading to behavioral hyperalgesia. The presence of
descending inhibition and facilitation originating from the
RVM suggests that the RVM output is a net effect of
interactions between these systems. Alterations in the
activation of these bimodal systems caused by enhanced
nociceptive drive from sites of tissue injury, drug manip-
ulations, or RVM lesions can reset this balance from
facilitation to inhibition, and vice versa [23].

Plasticity of Pain Modulatory Circuitry
after Inflammation

Studies in the past decade or so have come to the conclusion
that the CNS structures involved in pain modulation are

themselves, modifiable. After peripheral tissue injury, dy-
namic changes in descending pain modulation occur [24–28].
By monitoring inhibition of paw withdrawal responses to a
noxious thermal stimulus, or antinocifensive responses, in
lightly anesthetized rats during RVM stimulation, Terayama
et al. [29] examined the potency of descending inhibition
during the development of inflammation. After a unilateral
CFA-induced hind paw inflammation, the stimulus–response
function curve for the inflamed paw was initially shifted to
the right of the noninflamed paw at 3 h, suggesting a
reduced net inhibition, and then gradually shifted to the left
and reached maximal potency at 24 h after inflammation.
These findings indicate that inflammation induces dramatic
changes in the excitability of RVM pain-modulatory circuit-
ry. Early in the development of inflammation there is an
increased descending facilitation, which reduces the net
effect of the inhibition. Over time, the level of descending
inhibition increases, or descending facilitation decreases,
leading to a net enhancement of antinociception. Direct
stimulation of the spinal dorsolateral funiculus that bypasses
brainstem synaptic mechanisms does not produce a change in
excitability indicating that the changes are caused by supra-
spinal mechanisms at the level of the RVM or higher. Thus,
the activity of descending pathways exhibits considerable
plasticity.

The plasticity of the pain modulatory circuitry also
involves enhanced RVM neuronal activity. Using nocifensive
withdrawal responses as a behavioral correlate, RVM
neurons have been characterized as “on cell,” “off cell,”
and “neutral cell” [30, 31]. An on cell typically shows a
burst of activity immediately before the onset of a
nocifensive response, and an off cell exhibits a pause in
activity just before a nocifensive response. These two types
of cells are pain-modulatory neurons. The activity of
neutral cells has no clear relationship to nocifensive
responses and the role of neutral cells in pain modulation
is less clear. Apparently, the time-dependent plasticity in
descending pain modulatory circuitry involves changes in
the response profiles of RVM neurons. Montagne-Clavel
and Oliveras [32] have shown changes in RVM neuronal
properties after inflammation in the awake, freely moving
rat, which suggests an increase in the population of neurons
involved in pain modulatory activity. Through continuous
recordings during the development of inflammation, Miki
et al. [33] showed that some neutral-like cells changed their
response profile and could be reclassified as on or off cells.
The switch in the response profile of RVM neurons
correlates with the temporal changes in excitability in the
RVM after inflammation. This phenotypic change of RVM
neurons was verified in a population study that showed a
significant increase in the percentage of on and off cells,
and a decrease in the neutral-like cell population 24 h after
inflammation as compared to control animals [33]. The
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studies of RVM neurons support the view that enhanced
descending modulation after inflammation involves both
facilitation and inhibition as there are changes in the
responses of both on and off cells [33, 34]. The enhanced
RVM neuronal activity likely results from an increased
synaptic input and receptor activation after injury.

Involvement of NMDA Receptors

Activation of excitatory amino acid receptors in pain
modulatory neurons in the RVM mediates morphine
analgesia [35]. Glutamatergic synapses in descending
circuitry also play a critical role in response to injury [15,
36]. Injection of NMDA, the prototype NMDA receptor
agonist, into the RVM produces pain facilitation or
inhibition that is dependent upon the postinflammatory
time period. At 3 h postinflammation, low doses of NMDA
produce facilitation of the response to noxious heat of the
inflamed and noninflamed hind paws and tail, indicating
that descending facilitatory effects are NMDA receptor
dependent and occur early after inflammation [36]. Higher
doses of NMDA at 3 h postinflammation only produce
inhibition. At 24 h postinflammation, NMDA produces
only inhibition. All of these effects are blocked by
administration of NMDA receptor antagonists [36]. These
findings suggest a contribution of NMDA receptors to
changes in synaptic strength and potency in the RVM after
inflammation. Thus, as with experimental phenomena of
LTP and LTD [5], at least one form of experience or
activity-dependent plasticity in the RVM is NMDA receptor
dependent.

The increased sensitivity of NMDA receptors in the
descending circuitry during the development of inflamma-
tory hyperalgesia is related to transcriptional and transla-
tional modulation of the receptors. The native NMDA
receptor is likely a tetramer that consists of two NR1 and
two NR2 subunits. Examination of the mRNA expression
of the NR1, NR2A and NR2B subunits of the NMDA
receptor in the RVM reveals an upregulation that parallels
the time course of the RVM excitability changes. This is
accompanied by an increase in NMDA receptor protein
levels [33].

Protein phosphorylation is a major mechanism for
regulation of receptor sensitivity and changes in synaptic
strength. Phosphorylation of multiple sites in the cytoplas-
mic C-termini of the NR1 and NR2 subunits, including
tyrosine, serine, and threonine residues, is known to
modulate NMDA receptor activity, affect synaptic trans-
mission, and contribute to behavioral hyperalgesia [37–41].
There was a time-dependent increase in NR2A tyrosine
phosphorylation in the RVM after inflammation as com-
pared to naïve noninflamed rats (Fig. 2). Interestingly,

inflammation induces an increase in NR2B, but not NR2A
subunit tyrosine phosphorylation in the spinal cord [40].
These changes in phosphorylation involve intracellular
signaling pathways that include mGluR activation by
glutamate, diacylglycerol (DAG)-inositol trisphosphate
(IP3) second messenger pathways, the release of calcium
from intracellular stores, and activation of Src family
kinases, with resulting coupling of mGluR activation to
NMDA receptor NR2 subunit phosphorylation [40, 42]. The
similarity of these cell-signaling pathways to those found
associated with LTP is apparent and suggests common cell
signaling mechanisms underlying synaptic plasticity asso-
ciated with LTP and inflammatory hyperalgesia.

Fig. 2 Western blot illustrating an increase in NR2A tyrosine
phosphorylation in the RVM after CFA-induced inflammation. RVM
tissues were punched out and proteins were isolated from noninflamed
(Ctrl) rats and rats at 10 min (10′) to 14 d after inflammation. To
examine tyrosine phosphorylation of the NR2 subunits, protein
samples from RVM were first immunoprecipitated with anti-NR2A
or anti-NR2B antibodies. The eluted NR2A or NR2B proteins were
then incubated with an anti-phosphotyrosine antibody (clone 4G-10).
The tyrosine phosphorylation, as indicated by the immunoblot against
4G-10, was associated with a band of 180 kDa that correlates with the
NR2 subunit of the NMDA receptor in RVM tissues. The top blot
shows the immunoreactive bands against anti-phosphotyrosine 4G-10
(PY-NR2A) after immunoprecipitation of extracted proteins with anti-
NR2A antibodies. The bottom blot shows immunobands against NR2A
antibodies after stripping and reprobing the same membrane previously
probed with 4G-10 antibodies. The levels of tyrosine phosphorylation
are compared by normalizing to the NR2A-immunoreactive bands. The
relative phosphotyrosine protein levels (mean±SEM) after inflammation
are expressed as a percentage of the control. Asterisks indicate
significant differences from the control (p<0.05, n=5). Dashed line
indicates the control levels. (Adapted from 80, Copyright 2006 by the
Society for Neuroscience, with permission)
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A time-dependent increase in NR1 serine 896/897
phosphorylation has also been identified in the RVM after
hind paw inflammation [43]. A common feature of the
changes in NMDA receptor phosphorylation is that it
occurs rapidly, as early as 10–30 min after inflammation,
and persists for up to a week. The time course of changes in
NMDA receptor phosphorylation in the RVM correlates
well with changes in excitability in descending circuitry
after inflammation.

In summary, it is clear that the synaptic plasticity
observed in pain pathways shares much similarity with
more extensively studied forms of synaptic plasticity such
as LTP and LTD, which typically express NMDA receptor
dependency and regulation by trophic factors. LTP and
LTD are experimental phenomena, which can be used to
demonstrate synaptic plasticity and long term changes in
synaptic circuitry. However, it has been difficult to prove
that LTP /LTD occurs in vivo in response to behavioral
experience and subserve functional roles [5]. Although
mechanisms of synaptic plasticity in pain pathways have
typically not been related to LTP or LTD, pain pathways
have an advantage as a model system for eliciting LTP or
LTD-like synaptic modifications as there are many well-
established models of persistent pain with clear measures of
the behavioral phenotype.

BDNF and Persistent Pain

In the adult mammalian brain, BDNF facilitates excitatory
synaptic transmission and long-term synaptic plasticity
[44]. The effects of BDNF are mediated through its binding
to a subtype of the tropomyosin-related kinase, TrkB, and
subsequent activation of downstream signaling pathways
[45, 46]. The BDNF–TrkB-signaling pathway plays an
essential role in activity-dependent synaptic plasticity
underlying LTP and LTD [44–47]. BDNF is also considered
a neuromodulator in spinal nociceptive processing [48–51].
Thus, BDNF–TrkB signaling is likely involved in synaptic
mechanisms underlying both memory and pain [52].

Evidence has accumulated that BDNF is involved in
chronic or persistent pain, although the focus has been
mainly on the periphery and BDNF released from primary
sensory neurons into the spinal cord (see [50, 53]). In
fibromyalgia patients, mean serum levels of BDNF are
significantly increased as compared to healthy controls
[54]. After peripheral inflammation, BDNF mRNA and
protein levels are upregulated in the dorsal root ganglion
and spinal cord in rats [55, 56]. There may be a phenotypic
switch of BDNF expression to large primary sensory
neurons associated with inflammation [57]. Inflammatory
hyperalgesia is attenuated by sequestration of endogenous
BDNF systemically [58] or in the spinal cord [56, 59],

antisense treatment against BDNF and TrkB [60], and
conditional knock-out of BDNF in primary sensory neurons
[61]. The involvement of BDNF-TrkB signaling in pain
transmission is selective. Although both BDNF and neuro-
trophin-4 (NT-4) are ligands of the TrkB receptor, NT-4 is
not involved in nociceptive plasticity. In NT-4 null mutants,
the activity-dependent plasticity of the ventral root potential
evoked by stimulation of nociceptive primary afferents
remains normal [62]. In fact, NT-4 may modulate morphine
analgesia via TrkB [63].

Sciatic nerve injury upregulates BDNF mRNA and
protein expression in dorsal root ganglion cells [64–67]. It
has been reported that neuropathic pain in animals after
nerve injury also involves activation of the BDNF-TrkB
pathway [68–71]. However, Zhao et al. [61] show that
selective deletion of BDNF in primary sensory neurons
does not affect the development of neuropathic pain in
mice. This finding suggests that, if BDNF were involved in
neuropathic pain, it would come from other sources such as
spinal activated microglia. In rats with neuropathic pain,
there is a shift in the neuronal anion gradient [72]. This
shift of the anion gradient converts normally inhibitory
anionic synaptic currents to excitatory currents and leads to
increased excitability of dorsal horn neurons and behavioral
hyperalgesia. Interestingly, BDNF from activated microglia
produces a similar shift in neuronal anion gradient, as
indicated by a shift in the anion reversal potential in spinal
lamina I neurons [73]. As a result, at the resting membrane
potential, gamma-amino butyric acid (GABA) induces
depolarization, instead of hyperpolarization, in nerve-
injured rats. These results suggest that microglia-derived
BDNF may be an important contributor to dorsal horn
neuronal hyperexcitability after nerve injury.

BDNF Signaling in Pain Modulatory Circuitry
Facilitates Inflammatory Hyperalgesia

BDNF is widely expressed throughout the adult mamma-
lian nervous system [74–76]. Notably, studies have shown
high levels of BDNF mRNAs and proteins within the PAG
[75, 77]. Abundant TrkB mRNAs and proteins are observed
in RVM neurons projecting to the spinal dorsal horn [78,
79]. The distribution of the BDNF–TrkB system in the
PAG–RVM circuitry suggests their role in synaptic activity
related to pain modulation [53]. Our recent work demon-
strates that enhanced supraspinal BDNF–TrkB-receptor
signaling contributes to the development of persistent pain
after tissue injury [80].

PAG neurons provide major synaptic input to the RVM
[81, 82]. In the ventrolateral PAG, more than 60% of RVM-
projecting neurons express BDNF [80]. These BDNF-
containing neurons in the PAG are involved in the response
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to injury. After hind paw inflammation, both immunostain-
ing and Western blot show significant increases in BDNF-
like immunoreactivity in the PAG [80]. The upregulation of
BDNF in PAG neurons is associated with the development
of behavioral hyperalgesia. Accompanying the increase in
BDNF in PAG, the levels of full-length TrkB proteins and
their phosphorylation also exhibit time-dependent increases
after inflammation in the RVM (Fig. 3).

Electrical stimulation of the peripheral nerve can induce
BDNF release into the spinal cord [83, 84]. This release of
BDNF is stimulus parameter dependent [50, 85]. It appears
that primary afferents carry distinctive firing patterns,
which encodes the release of different transmitters and
subsequent neuronal activation in the spinal dorsal horn.
Continuous electrical stimulation leads to release of sub-
stance P and glutamate and the activation of neurokinin1
(NK1) and alpha-amino-3-hydroxy-5-methyl-4-isoxazole
propionic acid (AMPA) receptors on postsynaptic spinal
neurons. When tetanic stimulation is employed, additional
recruitment of NMDA receptors occurs. Only after trains of
burst stimulation (TBS) or stimulation at C-fiber strength, in
addition to NK1, AMPA and NMDA receptors, TrkB
receptors are recruited because of BDNF release in the
spinal dorsal horn [50, 85]. This parameter-dependent
property of stimulation-evoked BDNF release is very similar
to that described in LTP [86, 87]. It associates BDNF release
with long-term modification of synaptic strength and
activity-dependent neuronal plasticity.

The TBS protocol that induces BDNF release in the
spinal cord also is sufficient to evoke BDNF release in
PAG-RVM synapses. Because TrkB undergoes immediate
autophosphorylation after binding to released BDNF, the
increase in TrkB tyrosine phosphorylation (pTrkB) can be
used as a measure of increased activation of the receptor
and provides evidence for the release of BDNF from
presynaptic terminals [88, 89]. We have applied TBS to the
ventrolateral PAG to activate PAG neurons in isoflurane
anesthetized rats and assessed the levels of pTrkB in the
RVM [80]. Compared with the rats not receiving stimulation,
the pTrkB level in the RVM was significantly increased at
30 min after electrical stimulation of PAG (Fig. 4a). Double
immunostaining of Tyr490 (anti-phospho-tyr490-TrkA/B
antibodies) and TrkB with RVM tissues showed that
electrical stimulation of the PAG with TBS induced an
increase in the number of pTrk (Tyr490)-immunoreactive
puncta in the cytoplasm and proximal dendrites of TrkB-
labeled RVM neurons. These observations are consistent
with the upregulation of BDNF in PAG and pTrkB in RVM
neurons after peripheral inflammation and suggest functional
release of BDNF in pain modulatory circuitry during
maintained ascending input after injury.
What is the functional significance of activation of the PAG-
RVM BDNF-containing neurons in pain processing? Results
from behavioral pharmacological studies indicate that RVM–

BDNF signaling produces pain facilitation [80]. First,
injection of presumably physiological doses of BDNF (10–

Fig. 3 Peripheral inflammation upregulates TrkB and TrkB phosphor-
ylation in the RVM. a–b: Western blot shows the time-dependent
increase of the TrkB expression (a) and tyrosine phosphorylation of
TrkB (p-TrkB, b) in the RVM after inflammation. The upper blots
show examples of the immunoreactive bands against anti-TrkB that
identifies both full-length and truncated TrkB (a) and 4G-10, the
antiphosphotyrosine antibody (b). The lower blots shows immuno-
bands against beta-actin and TrkB antibodies, respectively, after

stripping and reprobing the same membrane. The bottom bar graphs
show the mean levels of the full-length TrkB and p-TrkB normalized
to beta-actin (a) and TrkB (b). The relative TrkB and p-TrkB levels
(mean±SEM) after inflammation are expressed as a percentage of the
controls. Asterisks indicate significant differences (p<0.05) from the
control (n=4 per time point). (Adapted from 80, Copyright 2006 by
the Society for Neuroscience, with permission)
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100 fmol) into the RVM produces behavioral hyperalgesia as
indicated by a reduction of paw withdrawal latencies to a
noxious thermal stimulus. Second, neutralizing RVM BDNF
with antiBDNF antiserum or TrkB-IgG fusion protein
attenuates inflammatory hyperalgesia. Third, knockdown of
RVM TrkB receptors by RNA interference leads to
attenuation of behavioral hyperalgesia. Thus, BDNF–TrkB
signaling in supraspinal circuitry is complementary to the
well-documented contribution of BDNF anterogradely trans-
ported from dorsal root ganglion neurons to the spinal cord
to pain hypersensitivity [56, 59]. BDNF is likely associated
with RVM neurons or circuitry that contribute to the net
descending pain facilitation. The chemical signature(s) of
descending inhibitory vs facilitatory circuitries needs to be
further studied. It is of interest to determine whether
serotoninergic neurons in the RVM participate in BDNF-
produced descending pain facilitation [90].

The effect of BDNF on pain behavior is dose dependent.
Whereas BDNF facilitate nociception in the fmol dose range
[60, 80], studies have shown that exogenously applied high
doses of BDNF (in the nmol range) into the cerebral
ventricle [91], PAG [92–94], RVM [80], or intrathecal space
[88, 95] produce analgesia or hypoalgesia. Applying high
doses of BDNF to the spinal cord produces inhibition of
evoked activity of 75% of dorsal horn nociceptive neurons
[96]. Overexpression of BDNF in the rat spinal cord
suppresses neuropathic pain [97]. It is estimated that the
fmol dose of BDNF mimics physiological concentration and

likely produces an effect through TrkB signaling [80]. On
the other hand, the analgesia produced by high doses of
BDNF (nmol) may be related to (1) downregulation of TrkB
receptors [80, 93, 98] or (2) activation of p75 neurotrophin
receptor that produces synaptic inhibition [99]. BDNF may
also upregulate endogenous opioids to produce analgesia
[94]. It should be noted again that the net effect of
descending modulation is a result of the interaction between
facilitatory and inhibitory drives. For example, the TBS of
the PAG that produces release of BDNF in the RVM should
produce antinociception when a behavioral end point is used.
Although BDNF is released, its facilitatory effect on pain
transmission can be overridden by simultaneous activation of
descending inhibition produced by intense PAG electrical
stimulation [9, 10].

Interaction with NMDA Receptors

BDNF exerts its effects via interactions with other receptors
and ion channels [100, 101]. The facilitation of BDNF on
glutamatergic synaptic transmission constitutes an impor-
tant mechanism for activity-dependent long-term synaptic
plasticity in the CNS [44, 102–105]. The interrelationship
between the TrkB receptor and NMDA receptors in pain
transmission has also received attention. BDNF enhances
phosphorylation of NMDA receptor subunits in the spinal
dorsal horn [85, 106]. Consistently, there is a concurrent

Fig. 4 a Western blot illustrating an example of the increased
phosphorylation of TrkB receptor (pTrkB) in RVM after electrical
stimulation of PAG. Proteins from RVM tissues were first immuno-
precipitated with TrkB and subsequently probed against 4G-10.
Compared to the sham control (−), there was an increase (p<0.01,
n=4 per group) in pTrkB in the RVM at 30min after electrical stimulation
(+). Trains of burst stimulation (TBS) protocol: 60 trains, square pulses
of 0.5 ms, 67 Hz, 0.25 mA; for a total of 10 min, 1 sec on and 9 sec off.
b–d. BDNF-induced NR2A tyrosine phosphorylation in RVM. The
transverse brainstem slice including RVM was obtained from adult 8–

10-week-old rats. The slices were incubated with BDNF (18.5 nM) for
10 min before protein extraction. Representative immunoblots against
anti-4G-10 (PY-NR2A) and anti-NR2A antibodies are shown. Pretreat-
ment with an IP3 receptor antagonists 2-aminoethoxydiphenyl borate
(2APB, 0.036 mM, b), a PKC inhibitor chelerythrine (Che, 0.01 mM, c),
a Src family tyrosine kinase inhibitor PP2 (0.04 mM, d), blocked or
attenuated the BDNF-induced increase in PY-NR2A in the RVM.
(Adapted from 80, Copyright 2006 by the Society for Neuroscience,
with permission)
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abolition of NR1 serine 896/897 phosphorylation, but not
AMPA receptor subunit GluR1 ser831 phosphorylation, in
the spinal dorsal horn after conditioned knock out of BDNF
in primary sensory neurons [61]. BDNF potentiates
NMDA-evoked ventral root responses [59] and facilitates
synaptic current of superficial dorsal horn neurons, an
effect dependent upon NMDA receptor activity [107].
Intrathecal coadministration of an NMDA receptor antag-
onist with BDNF dose dependently inhibits BDNF-induced
hyperalgesia [60].

The interaction of BDNF–TrkB signaling with NMDA
receptors is likely a mechanism underlying injury-induced
plasticity in the brainstem pain modulatory circuitry. This
view is supported by convergent lines of evidence [33, 80]:
(1) Inflammation induces upregulation of TrkB and NMDA
receptor subunits and enhanced phosphorylation of both
TrkB and NMDA receptor subunits in the RVM; (2) BDNF
applied to RVM slices produces an increase in NR2A
tyrosine phosphorylation (Fig. 4b–d); (3) Preadministration
of NMDA receptor antagonists AP-5 and MK-801 abol-
ishes intra-RVM BDNF-induced facilitation of the paw
withdrawal response to noxious heat; and (4) TrkB
colocalizes with NR2A in RVM neurons.

The activation of the NMDA receptor after BDNF-TrkB
signaling involves several intermediate cellular pathways
[45, 50]. Our recent results indicate that IP3 and protein
kinase C (PKC) are involved in BDNF-induced and Src-
mediated NR2A tyrosine phosphorylation in RVM neurons
(Fig. 4b–d). Thus, this signaling pathway is likely initiated
through phosphorylation of the tyrosine residue (Y785) on
TrkB that is related to activation of phospholipase C (for
comprehensive description of TrkB activation and related
cytoplasmic adaptor proteins, see [45, 46, 50]), which is
followed by IP3 and DAG formation, intracellular calcium
release, and PKC activation. These events may lead to Pyk2
(proline-rich tyrosine kinase 2) and Src activation, and
NR2A tyrosine phosphorylation [42, 108] (Fig. 1b). These
cell-signaling pathways involving BDNF and TrkB are
quite similar to those associated with neuronal plasticity in
the hippocampus and other sites [44, 45]. The findings
indicate the usefulness of models of persistent hyperalgesia
in the study of cell signaling and its relationship to changes
in synaptic strength so important in learning.

Distinct features are noticed for inflammation-induced
NR2 tyrosine phosphorylation in the RVM when compared
to the spinal dorsal horn. First, the NR2A subunit, but not the
NR2B subunit, is tyrosine phosphorylated by BDNF. This is
likely related to the differential distribution of the two subunits
in the brain [109]. Second, group I mGluRs do not appear to
play a role in BDNF-induced NR2A phosphorylation,
suggesting different signaling pathways [42, 80]. The
mitogen-activated protein kinase (MAPK) signaling pathway
is likely involved in mediating the modulatory effect of

BDNF on NMDA receptors. It has been shown that BDNF
activates extracellular signal-regulated kinases (ERK) in the
spinal dorsal horn [88]. The MEK inhibitor U0126 reduces
BDNF-induced NR1 serine 897 phosphorylation in an in
vitro spinal cord preparation [85]. Further, cyclic AMP
response element binding protein shows increased phosphor-
ylation after local application of BDNF in the spinal dorsal
horn [110]. Thus, the activation of the MEK/ERK pathway
contributes to BDNF-induced NR1 phosphorylation in the
spinal cord and may lead to increased transcriptional
regulation of nociception.

BDNF may bind to postsynaptic TrkB receptors and
enhance NMDA receptor activity through intermediate
cellular-signaling pathways. In the pain modulatory circuit-
ry, the postsynaptic mechanism of BDNF is supported by
findings that activation of PAG neurons induces internal-
ized and phosphorylated TrkB, and the NMDA receptor
subunit colocalizes with TrkB in RVM neurons [80]. In the
spinal dorsal horn, antagonism of postsynaptic NMDA
receptors with intracellular MK-801 prevents BDNF-
produced facilitation of synaptic current [107]. It is also
understandable that BDNF is capable of modulating
synaptic plasticity through both pre and postsynaptic
mechanisms [46, 53, 111]. In the rat hippocampus, the
full-length TrkB receptor is located at plasma membrane of
dendritic spines, axon initial segments and axon terminals,
implicating its pre and postsynaptic localization [112]. The
TrkB receptor is located in primary sensory neurons and
spinothalamic projection neurons [113, 114]. Pre and
postsynaptic localization of full-length TrkB in the super-
ficial dorsal horn has been described [115]. It is unclear
whether BDNF can engage presynaptic TrkB to enhance
glutamate release from presynaptic terminals in the RVM,
resulting in activation of NMDA receptors. A recent report
in spinal slices suggests that BDNF modulate dorsal horn
neurons through a presynaptic mechanism [58]. However,
in rats with nerve injury, BDNF may be released from
microglia and induce an increased excitability of dorsal
horn neurons through postsynaptic mechanisms [73].

The coupling of BDNF-TrkB signaling with NMDA
receptors raises the possibility that NMDA-receptor activa-
tion is a site of convergence of intracellular signal
transduction via other receptor systems. The AMPA
receptor is involved in descending pain inhibition after
inflammation [36]. There is an increase in the AMPA
receptor GluR1 subunit levels in the RVM postinflamma-
tion [116]. GluR1 serine 831 phosphoprotein levels are also
increased as early as 30 min after inflammation. Consistent
with the above hypothesis, the increase in GluR1 phos-
phorylation and AMPA-produced descending inhibition of
behavioral hyperalgesia is blocked by NMDA receptor
antagonists, suggesting that NMDA receptor activation is
downstream to AMPA receptor in the RVM circuitry [36,

Mol Neurobiol (2007) 35:224–235 231231



117]. This scheme may also be applicable to other RVM
chemical mediators involved in descending modulation.
The importance of the NMDA receptor as an output
pathway leading to enhanced hyperalgesia after injury
should not be minimized. Intracellular coupling to this
receptor leads to changes after persistent injury and not in
response to transient protective pain. NMDA receptor
activation requires persistent receptor depolarization to
remove the magnesium block. Chemical changes after
transient injury will not activate this pathway.

Concluding Remarks

Pain modulatory circuitry in the brainstem exhibits consid-
erable plasticity in response to injury. The increased
neuronal barrage after injury activates spinal projection
neurons that then activate multiple chemical mediators
including glutamatergic, opioidergic, and presumably
GABAergic neurons at the brainstem level, leading to an
increased synaptic strength and facilitatory output. It is not
surprising that a well-established regulator of synaptic
plasticity BDNF also plays a critical role in pain modula-
tory circuitry and contributes to the mechanisms of
descending pain facilitation. After peripheral tissue injury,
BDNF–TrkB signaling in the brainstem descending circuit-
ry is rapidly activated. Through the intracellular signaling
cascade that involves phospholipase C, IP3, PKC, and
nonreceptor protein tyrosine kinases, NMDA receptors are
phosphorylated and descending facilitatory drive is initiat-
ed; and behavioral hyperalgesia follows. The activity-
induced plasticity in descending circuitry complements the
activity-dependent neuronal plasticity in ascending pain
transmission pathways, which also requires BDNF–TrkB
signaling and NMDA receptor contribution. It is no
coincidence that the synaptic plasticity observed in the
pain pathways share much similarity with other forms of
synaptic plasticity such as LTP and depression in the CA1
region of the hippocampus, which typically express NMDA
receptor dependency and regulation by trophic factors [5].
In fact, the physiological relevance of cell signaling
mechanisms involved in pain pathways and leading to
activity- and experience-dependent plasticity can serve as
model systems for studying the cellular basis of changes in
synaptic strength. There are many well-established in vivo
models of persistent pain with clear behavioral outcome
measures or phenotypes. Further studies will elucidate
cellular and molecular mechanisms of pain sensitization
and further our understanding of principles of CNS
plasticity and responsiveness to environmental challenge.
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