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Activity-dependent, homosynaptic LTP (1) at synapses in 
nociceptive pathways contributes to pain amplification (hy-
peralgesia) at the site of an injury or inflammation (2–5). 
Homosynaptic LTP can, however, not account for pain am-
plification at areas surrounding (secondary hyperalgesia) or 
remote from (widespread hyperalgesia) an injury. It also 
fails to explain hyperalgesia that is induced independently 
of neuronal activity in primary afferents, e.g., by the applica-
tion of, or the withdrawal from opioids (opioid-induced hy-
peralgesia) (6). Glial cells are believed to contribute to these 
forms of hyperalgesia and to LTP in nociceptive pathways 
(7–10). Induction of homosynaptic LTP can be accompanied 
by LTP in adjacent, inactive synapses converging onto the 
same neuron, especially early in development. The respec-
tive molecular signals for this heterosynaptic form of LTP 
are thought to be confined within the cytoplasm of the acti-
vated neuron spreading tens of micrometers only (11). We 
now tested the hypothesis that, in contrast to current be-
liefs, activation of glial cells is causative for the induction of 
LTP at spinal C-fiber synapses and that this gliogenic LTP 
constitutes a common denominator of homo- and heter-
osynaptic LTP in the spinal cord. 

Our previous study revealed that selective activation of 
spinal microglia by fractalkine induces transient facilitation, 
but no LTP at C-fiber synapses (12). Here we recorded mon-
osynaptic C-fiber-evoked excitatory postsynaptic currents 
(EPSCs) from lamina I neurons in rat lumbar spinal cord 
slices. To test if selective activation of spinal astrocytes is 
sufficient for the induction of synaptic plasticity in the ab-
sence of any other conditioning stimulus, we used UV-flash 
photolysis of caged IP3 in astrocytic networks (fig. S1 and 
movie S1). This induced a robust long-term depression at C-
fiber synapses (gliogenic LTD; to 69 ± 9%, n = 7, P < 0.001; 
fig. S1C) but no LTP. UV-flashes were without any effect on 

synaptic strength when applied in the absence of caged IP3 
(fig. S1D), or in presence of the glial cell toxin fluoroacetate 
(fig. S1E). To co-activate microglia and astrocytes, we next 
applied the purinergic P2X7 receptor (P2X7R) agonist 
BzATP. This never affected holding currents or membrane 
potentials in any of the spinal neurons tested (fig. S2) sup-
porting the observation that, in the spinal dorsal horn, and 
unlike other P2X receptors (13), P2X7Rs are expressed exclu-
sively on glial cells (14–18). ATP is finally hydrolyzed to 
adenosine. We therefore applied the adenosine 1 receptor 
antagonist DPCPX to block adenosine-mediated presynaptic 
inhibition (fig. S3). Combined activation of microglia and 
astrocytes by BzATP induced LTP in 13 out of 22 C-fiber in-
puts (to 156 ± 13%, P < 0.001; Fig. 1A). BzATP-induced LTP 
was abolished by the selective P2X7R antagonist A-438079 
(Fig. 1B) and by fluoroacetate (Fig. 1C). This demonstrates 
that selective activation of P2X7R on spinal glial cells caused 
gliogenic LTP at synapses between C-fibers and lamina I 
neurons. 

High frequency stimulation (HFS) of primary afferent C-
fibers triggers the release of ATP from primary afferent neu-
rons (19, 20), activates glial cells (21, 22), and induces LTP 
(2, 3), leading to the intriguing hypothesis that HFS-induced 
LTP at spinal C-fiber synapses might be a variety of gliogen-
ic LTP. If true, one would predict that HFS induces LTP not 
only at conditioned but also at unconditioned C-fiber synap-
ses and that, in striking contrast to current beliefs, homo- 
and heterosynaptic LTP could be expressed independently 
of each other. To directly test these predictions we used 
transverse, lumbar spinal cord slices with long dorsal roots 
attached which were separated into halves. We recorded 
from 22 dorsal horn lamina I neurons that received inde-
pendent monosynaptic C-fiber input from each dorsal root 
half. HFS applied to one dorsal root half induced LTP in the 
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conditioned pathway in 12 of these neurons (“homosynaptic 
LTP”; to 134 ± 9%, P < 0.001; Fig. 2Aa, red filled circles). Out 
of these 12 neurons, where homosynaptic LTP was induced, 
6 also showed LTP at the unconditioned pathway (“heter-
osynaptic LTP”). In total, heterosynaptic LTP was induced 
in 11 out of 22 neurons (to 174 ± 19%, P < 0.001; Fig. 2Ba, 
blue filled circles) because importantly, in 5 of these neu-
rons, heterosynaptic LTP was induced in the absence of 
homosynaptic LTP (to 161 ± 9%, P < 0.005; Fig. 2C), a find-
ing that cannot be explained by current models of synaptic 
plasticity. 

We tested if HFS-induced homo- and heterosynaptic LTP 
require activation of glial cells via P2X7R. Blockade of glial 
P2X7R by A-438079 fully blocked LTP induction at the con-
ditioned and at the unconditioned sites (Fig. 2Ab, Bb). This 
was also achieved by blocking glial cell metabolism with 
fluoroacetate [Fig. 2Ac, Bc and (21)]. Both, homo- and het-
erosynaptic LTP were abolished by blocking postsynaptic 
NMDARs (Fig. 2Ad, Bd). D-Serine is a co-agonist at 
NMDARs that is released from astrocytes (23). Here, pre-
incubation of slices with the D-serine degrading enzyme D-
amino acid oxidase (DAAO) abolished both, homo- and het-
erosynaptic LTP (Fig. 2Ae, Be). We then tested if D-serine 
alone is sufficient to enhance synaptic strength at C-fiber 
synapses. Bath application of D-serine facilitated synaptic 
strength at C-fiber synapses (to 120 ± 2% in 13 out of 32 
cells, P < 0.001; fig. S4A). This amplification was abolished 
by blockade of NMDARs (in 12 out of 13 cells, P = 0.094; fig. 
S4B). Taken together our data demonstrate that the com-
bined activation of microglia and astrocytes, either via 
P2X7R or by HFS was sufficient to induce gliogenic LTP. 
When gliogenic LTP is induced by conditioning HFS it may 
appear as homo- and / or heterosynaptic LTP that can be 
elicited independently of each other. 

We next asked if gliogenic LTP also exists in vivo. HFS 
applied to the sciatic nerve induced LTP of spinal C-fiber-
evoked field potentials in deeply anesthetized rats (to 211 ± 
16% at 220 – 240 min, n = 49, P < 0.001; Fig. 3A). HFS-
induced LTP was blocked by spinal application of either 
fluoroacetate (Fig. 3B) or DAAO (Fig. 3C) indicating that it 
required the activation of spinal glial cells and D-serine sig-
naling. Application of fluoroacetate or DAAO after the in-
duction of LTP had no effects on LTP maintenance (to 192 ± 
23% and to 181 ± 30%, respectively, at 220 – 240 min, n = 6, 
P = 0.433 and P = 0.546; fig. S5) indicating that once LTP 
was induced glial cells were no longer required. Thus, the 
gliogenic nature refers to the induction but not to the 
maintenance phase of LTP. 

We then tested if HFS leads to the release of diffusible 
mediators that spread over significant distances to trigger 
LTP. We induced LTP by HFS, collected the spinal super-
fusate from the respective lumbar segments and transferred 

it to the spinal cord dorsum of naïve animals. The mainte-
nance of LTP in the donor animals was not affected by ex-
changing the superfusate (Fig. 3A). The superfusate 
induced, however, a robust LTP in the recipient animals (to 
173 ± 32% of control at 160 – 180 min, n = 10, P = 0.009; Fig. 
4A) demonstrating that LTP could be transferred between 
individuals. The superfusate collected from naïve donor an-
imals had, in contrast, no effect on synaptic transmission in 
any of the recipient animals (Fig. 4B). When glial cells were 
blocked in the recipient animals “transferable LTP” was still 
induced (to 160 ± 20%, n = 9, P < 0.001; Fig. 4C). Blockade 
of interleukin-1β (IL-1β) signaling in the recipient animals 
also had no effect on the induction of transferable LTP (to 
133 ± 12% at 180 – 240 min, n = 10, P = 0.001; Fig. 4D). 
However, LTP induction was prevented by blocking TNF 
(Fig. 4E), D-serine signaling (Fig. 4F) or spinal NMDA re-
ceptors (Fig. 4G) in the recipient animals. Application of D-
serine to the spinal cord dose-dependently induced a re-
versible synaptic facilitation (to 152 ± 9% at 220 – 240 min, 
n = 10, P < 0.001; fig. S6), while TNF application triggers 
robust LTP at C-fiber synapses (21). These data indicate that 
transferable LTP required activation of glial cells in the do-
nor, but not in the recipient animals and that the combined 
actions of the gliotransmitters D-serine and TNF were re-
quired for its induction. 

Collectively our data indicate that the combined activa-
tion of microglia and astrocytes either by P2X7R agonists or 
by HFS of primary afferents triggered gliogenic LTP at C-
fiber synapses with spinal lamina I neurons via the release 
of D-serine and cytokines such as TNF. Crucially, glial cell-
derived signaling molecules accumulated in the extracellu-
lar space including the cerebrospinal fluid at biologically 
active, but presently unknown concentrations and induced 
LTP at C-fiber synapses, constituting the phenomenon of 
gliogenic LTP. 

Gliogenic LTP is a new form of paracrine synaptic plas-
ticity in the central nervous system and may lead to pain 
amplification close to and remote from an injury or an in-
flammation. This is in line with the concept of chronic pain 
as a gliopathy involving neurogenic neuroinflammation (7, 
24). These new insights may pave the way for novel pain 
therapies (25, 26). P2X7Rs play a key role in chronic inflam-
matory and neuropathic pain (27) and in other neurodegen-
erative and neuropsychiatric disorders (28). Glial cells 
display considerable diversity between and within distinct 
regions of the CNS (29). If the presently identified gliogenic 
LTP also existed at some brain areas, it could be of rele-
vance not only for pain but also for other disorders such as 
cognitive deficits, fear and stress disorders, and chronic 
immune-mediated diseases (24, 29, 30). 
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Fig. 1. Activation of spinal P2X7 receptors induces gliogenic LTP at C-fiber synapses. Recordings were 
performed on lamina I neurons with independent monosynaptic C-fiber inputs from two dorsal root halves. 
Amplitudes of EPSCs were normalized to 6 baseline values and the mean (±1 SEM) was plotted against 
time (min). Horizontal bars indicate drug application. (A) DPCPX (1 μM) application started at time point ‒
3 min. Bath application of BzATP (100 μM) started at time point 0 min and induced LTP at 13 out of 22 C-
fiber inputs (filled circles; P < 0.001, at 30 min of wash-out compared to control values). At 9 out of 22 C-
fiber inputs, BzATP did not influence EPSC amplitudes (open circles; P = 0.650, at 30 min of wash-out 
compared to control values). (B) Bath application of the P2X7R antagonist A-438079 (10 μM) 13 min prior 
to BzATP prevented the BzATP-induced LTP at all C-fiber inputs tested (n = 9, P = 0.054, at 10 min 
compared to baseline). (C) In the presence of fluoroacetate (10 μM), BzATP had no effect on synaptic 
transmission (n = 9, P = 0.114 at 10 min compared to baseline). Insets show individual EPSCs at indicated 
time points. Calibration bars indicate 50 pA and 10 ms. Statistical significance was determined by using 
RM ANOVA followed by Bonferroni t test. Paired t test was used for control recordings. 
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Fig. 2. Homo- and heterosynaptic forms of LTP are induced independently of each other at C-fiber synapses by 
conditioning HFS. Recordings were performed on lamina I neurons with independent monosynaptic C-fiber inputs 
from two dorsal root halves. Amplitudes of EPSCs were normalized to 6 baseline values and the mean (±1 SEM) was 
plotted against time (min). HFS was applied to one dorsal root (arrow; conditioned site in red) at time point 0 min. 
Horizontal bars indicate drug application. (Aa) HFS induced LTP at conditioned synapses in 12 out of 22 neurons 
(homosynaptic LTP in red, filled circles; P < 0.001, at 30 min compared to control values). In 10 of these neurons, no 
homosynaptic LTP was induced (open circles; P = 0.105). (Ba) HFS induced LTP at unconditioned synapses in 11 out 
of the same 22 neurons tested (heterosynaptic LTP in blue, filled circles; P < 0.001, at 30 min compared to control 
values). In 11 of these neurons, no heterosynaptic LTP was observed (open circles; P = 0.003). (C) In 5 out of these 22 
neurons tested, HFS induced LTP at unconditioned (filled circles in blue; 161 ± 10%, P = 0.005), but not at conditioned 
synapses (filled circles in red; P = 0.313). (D) Schematic illustration of homo- and heterosynaptic forms of LTP as 
varieties of gliogenic LTP. (Ab and Bb) HFS failed to induce LTP at the conditioned site in the presence of A-438079 
(10 μM; n = 8, P = 0.006). A-438079 had no effect on EPSC amplitudes at unconditioned synapses. (Ac and Bc) In the 
presence of fluoroacetate, LTP induction by HFS was abolished at conditioned and at unconditioned sites (10 μM; n = 
9, P = 0.006 and P = 0.034 respectively). (Ad to Be) The NMDA receptor blocker MK-801, which was added to the 
pipette solution (1 mM; n = 9, open bar; P = 0.044 and P = 0.250 respectively) or DAAO applied to the bath solution 
(0.2 U·ml−1; n = 9, P = 0.006 and P = 0.572 respectively) blocked the induction of LTP on both sites. Insets show 
individual EPSC traces recorded at indicated time points. Calibration bars indicate 100 pA and 10 ms. Statistical 
significance was determined by paired t test. In case of non-normality, Wilcoxon signed-rank test was used. 
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Fig. 3. HFS-induced LTP in vivo depends on spinal glial cells and D-
serine signaling. Area of C-fiber-evoked field potentials was normalized to 
baseline values prior to conditioning HFS and plotted against time (min). 
Data are expressed as mean ± 1 SEM. Horizontal bars indicate drug 
application. (A) Mean time course of LTP of C-fiber-evoked field potentials. 
HFS at time point 0 min (arrow) induced LTP in all animals tested (n = 49, 
P < 0.001). One hour after HFS, the superfusate was collected from the 
lumbar spinal cord dorsum and transferred to animals shown in Fig. 4. (B) 
Spinal superfusion with the glial inhibitor fluoroacetate (10 μM) fully 
blocked HFS-induced potentiation in all animals tested (n = 15, P = 0.085). 
(C) HFS-induced LTP was fully prevented by spinal superfusion with DAAO 
(1 U·ml−1; n = 6, P = 0.365). Insets show original traces of field potentials 
recorded at indicated time points. Calibration bars indicate 0.2 mV and 50 
ms. RM ANOVA on ranks was performed to determine statistical 
significance in (A). In all other experiments, data were analyzed by using 
RM ANOVA. 
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Fig. 4. LTP can be transferred 
between animals. Area of C-fiber-
evoked field potentials was normalized 
to baseline values prior to transfer of 
the superfusate and plotted against 
time (min). Data are expressed as 
mean ± 1 SEM. Horizontal bars indicate 
application of superfusate or drugs.  
(A) Spinal application of superfusates 
collected from donor animals shown in 
Fig. 3A one hour after HFS induced 
potentiation of C-fiber-evoked field 
potentials in all recipient animals tested 
(n = 10, P = 0.009). (B) Superfusates 
collected from naïve donor animals (no 
HFS) had no effect on synaptic 
strength in recipient animals (n = 7, P = 
0.477). (C) Superfusion of the recipient 
spinal cord dorsum with fluoroacetate 
(10 μM) or (D) IL1Ra (80 pg·ml−1) did 
not block LTP induction [n = 9, P < 
0.001 in (C) and n = 10, P = 0.001 in 
(D)]. LTP was, however, blocked by 
topical application of sTNFR (1 μg·ml−1; 
n = 10, P = 0.38), DAAO (1 U·ml−1; n = 6 
out of 7, P = 0.519) or D-AP5 (100 μM; n 
= 6, P = 0.652). (E to G) Insets show 
original traces of field potentials 
recorded at indicated time points. 
Calibration bars indicate 0.2 mV and 50 
ms. In (A) data were analyzed using a 
RM ANOVA on ranks followed by 
Dunnett’s test. In all other experiments, 
statistical significance was determined 
by using RM ANOVA. 
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