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Abstract Exact low resolution electromagnetic tomog-

raphy (eLORETA) was recorded from nineteen EEG

channels in nine patients with myalgic encephalomyelitis

(ME) and 9 healthy controls to assess current source den-

sity and functional connectivity, a physiological measure of

similarity between pairs of distributed regions of interest,

between groups. Current source density and functional

connectivity were measured using eLORETA software. We

found significantly decreased eLORETA source analysis

oscillations in the occipital, parietal, posterior cingulate,

and posterior temporal lobes in Alpha and Alpha-2. For

connectivity analysis, we assessed functional connectivity

within Menon triple network model of neuropathology. We

found support for all three networks of the triple network

model, namely the central executive network (CEN), sal-

ience network (SN), and the default mode network (DMN)

indicating hypo-connectivity in the Delta, Alpha, and

Alpha-2 frequency bands in patients with ME compared to

controls. In addition to the current source density resting

state dysfunction in the occipital, parietal, posterior tem-

poral and posterior cingulate, the disrupted connectivity of

the CEN, SN, and DMN appears to be involved in cogni-

tive impairment for patients with ME. This research sug-

gests that disruptions in these regions and networks could

be a neurobiological feature of the disorder, representing

underlying neural dysfunction.

Keywords eLORETA � Myalgic encephalomyelitis �
Chronic fatigue syndrome � Lagged phase synchronization �
Triple network model

Introduction

According to current theories of brain function, cognitive

abilities (Fuster 2009; Koziol and Budding 2009; Naglieri

and Das 1997) are supported by functionally linked, cor-

related and spatially distributed neurophysiological events,

sharing information in real time (Friston 2002; Hacker

et al. 2013; Jann et al. 2012). Consistent with this view,

within the past half-decade, hundreds of studies have

demonstrated brain function is best understood through

functional integration models showing the time-dependent

patterns in neural activation of anatomically separated

brain regions (Friston 2012; Menon 2012). These models

contrast with traditional brain mapping procedures (func-

tional segregation approach) utilizing regional cerebral

activation changes to identify abnormalities (Fuster and

Bressler 2012; Rabinovich et al. 2012a). As a result of a

paradigm shift in neural assessment, methods used to

evaluate the neurobiology of cognition currently measure

the brain’s intrinsic activity using multivariate functional

connectivity approaches rather than relying on discrete

brain regions to explain many aspects of neurobiology and

cognition. To better understand this viewpoint, one has to

go beyond classical information processing theory, seeing

the brain as an information processing device, dependent

upon multiple time series of continuous information flow to
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maintain steady-state homeostasis (Perlovsky 2012; Rabi-

novich et al. 2012a).

Myalgic encephalomyelitis (ME)1 is a complicated

disorder characterized by extreme fatigue not otherwise

explained by an underlying medical condition. However,

mild to moderate neurocognitive impairment (DSM-V), is

present and often worsens after physical or mental activity,

not improving with rest, rendering daily activities such as

cooking meals, taking care of oneself, etc. difficult or

impossible. Many with ME experience hyper-sensitivity to

environmental events such as chemicals, noise or lights,

and also experience persistent viral symptoms (sore throat,

headache, nausea, etc.) (Jason et al. 2013). The most severe

patients are bed-bound. Therefore, a crucial issue in the

study of ME is to discover better methods to measure

patient symptoms. Here, we focus on neurocognitive

symptoms of the disorder (Jason et al. 2015).

Paradoxically, there is a considerable gap between cur-

rent empirical findings which assess brain function using

neuropsychological testing in ME, and patient self-reports

(Cockshell and Mathias 2014; Hawk et al. 2006). Within

neuroimaging literature, a similar situation exists whereby

imaging studies have historically been conducted to

examine the neurocognition in ME with only inconsistent

and/or weak findings (DeLuca et al. 2009). For example, a

recent meta-analysis of 50 studies covering 1544 patients

with ME found that the neurocognitive deficits were only

seen in memory, attention, and reduced responsiveness,

failing to find support for many other symptoms and

complaints routinely reported by patients. Typically,

patients with ME describe symptomatology using con-

structs such as hypersensitivity to environmental events,

deficits in motor functioning, selective and sustained

attention, speech, planning, decision making, error cor-

rection, reading and speech comprehension, information

processing speed, and visuospatial ability (Dickinson 1997;

Jason et al. 2010a, b; Thomas and Smith 2009). The

unfortunate outcome of the diverse findings discussed here

have contributed to a wide schism in medicine and science

regarding ME; that is, some believe that the absence of

clear, consistent findings supports the hypothesis that ME

is simply a form of somatization disorder with very little or

no pathophysiology, while others believe that ME is a

medical disorder whose etiology is not fully known (Lange

et al. 1998, 2005; Tiersky et al. 1997; Twisk 2014). This

confusion has in turn led to a debate about how to best

investigate, classify, and treat ME (Twisk 2014). Another

substantial literature indicates that neurocognitive deficits

largely exist independently of ME (are not part of the

illness) (Afari and Buchwald 2003; Claypoole et al. 2007;

Constant et al. 2011; DeLuca et al. 1997; Sandman et al.

1993; Thomas and Smith 2009). Research indicates, how-

ever, that psychological antecedents, triggers, or mediators

of ME may be present as in any medical problem. Several

investigators have therefore shown that ME is not a pri-

mary psychological condition (Broderick et al. 2010; Hawk

et al. 2006; Maes et al. 2012; Wilson et al. 2002) and

though medical and/or psychological treatments may

reduce symptomatology, they have never been shown to

cure ME.

The use of quantitative electroencephalography (QEEG)

to assess neurocognition in ME has a more consistent

history. Known as the ‘gold standard’ measure of brain

states (Thatcher 2012), it is a core assessment in

polysomnography, epilepsy (Ropper and Samiuels 2014),

as well as numerous disorders of cognition (Westmoreland

2005). In 1990, QEEG event-related potentials were used

to assess the slowed speed of information processing in ME

(Prasher et al. 1990). Since that time, a small but growing

number of QEEG studies have been conducted, reporting

oscillatory abnormalities (particularly delta and theta) and

indications of homeostatic dysregulation in patients during

wakefulness (Billiot et al. 1997; Decker et al. 2009; Flor-

Henry et al. 2004; Hammond 2001; James and Folen 1996;

Kishi et al. 2011; Le Bon et al. 2012; Sherlin et al. 2007;

Siemionow et al. 2004; Van Hoof et al. 2007). In sum,

QEEG and electrical neuroimaging may hold promise for

use in evaluation of brain dysregulation in ME, especially

since several authors now believe that the pathology of ME

will be found at the cellular level (Broderick et al. 2010,

2011; Dinkel et al. 2002; Light et al. 2012; Wilson et al.

2002) and aberrant neural oscillations are a function of

structural and functional abnormalities, often existing at

the cellular level. It is therefore important to explore ME

using QEEG methods as this distinctive modality will

likely provide a more complete picture of neurocognitive

symptoms associated with true physiological events.

Another advantage of QEEG over fMRI, PET, SPECT,

MRI, CT and similar methods is that EEG measures

directly assess neuronal activity at a high time-resolution

(at the millisecond level), thereby detecting subtle time

differences in neuronal communication through examina-

tion of oscillatory patterns generated by cortical and sub-

cortical regions (Buzsaki 2006; Steriade 2005; Thatcher

2012). This is a distinct advantage given today’s neural

assessment models that emphasize the perpetual dynamic

nature of the brain and how neuropsychiatric issues can,

and often do, stem from dysregulated dynamic systems.

The electroencephalograph is able to detect functional

changes even in situations when MRI detects no or few

structural problems. Exact low resolution electromagnetic

tomography (eLORETA) is a linear, discrete, three-

1 For the sake of clarity, throughout this article we will use ME even

though a number of studies use Chronic Fatigue Syndrome (CFS) to

describe their patient samples.
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dimensional weighted minimal norm inverse solution and

the latest iteration in a family of well-established EEG

inverse methods (Pascual-Marqui 2002; Pascual-Marqui

et al. 1994, 2011a). eLORETA has the advantage of

allowing a non-invasive study of intra-cortical interactions

with accurate spatial resolution that is similar to fMRI even

after spatial filtering which is commonly applied, to

increase the signal-to-noise ratio of the hemodynamic

signal (Poldrack et al. 2012). Lagged phase synchroniza-

tion, one measure of information transfer between two

brain regions, is a real-time animation of the information

transfer that links patients’ symptoms and complaints to

functional systems in the brain. Here, we used this tech-

nology to assess the hypothesized functional system dys-

regulation in the brains of patients with ME.

Triple Network Model of Brain Pathology

Functional connectivity approaches have ushered in a

substantial paradigm shift in the study of cognitive

impairment (Menon 2011). These approaches aid in the

understanding of how functionally connected systems

produce pathology through alterations in connectivity pat-

terns or brain dynamics (de Pasquale et al. 2012; Sporns

2013). However, brain networks do not operate in isolation.

The Menon Triple Network model of brain pathology

(Greicius et al. 2008, 2009; Menon 2011, 2012; Supekar

and Menon 2012) offers such a system to assess cognitive

dysfunction in a variety of neurocognitive disorders

(Menon 2012; Rabinovich et al. 2012b). It hypothesizes

that there are three primary networks which operate syn-

ergistically to regulate shifts in arousal, attention, and

general access to cognitive abilities (Menon 2012; Raichle

2010; Uddin et al. 2011). Predictions from the model

include that dysregulation in one of the three core networks

will significantly impact the other two networks, producing

dysregulation of, and symptoms in, all three networks. The

complex symptom structures of these networks will then

vary according to their source (environmental events,

internal states, genetics), and can yield a number of levels

of prominence by time and individual.

For example, in a healthy brain, the central executive

network (CEN) and the salience network (SN) activity

increases as a function of cognitive and affective process-

ing (Uddin et al. 2013) while the Default Mode Network

(DMN) decreases activity during the same processing; the

opposite occurs during activation of the DMN activity

(Greicius and Menon 2004; Supekar and Menon 2012).

According to the model, when all three networks display

deficient context-dependent engagement and/or disen-

gagement signaling, they create imbalances leading to

neuropsychological symptomology produced by deficits

SN, DMN, and CEN activation and coactivation (Chand

and Dhamala 2015; Chiong et al. 2013; George and Pearce

2012).

The anterior insula (AI), a crucial hub in brain net-

works (Laird et al. 2011; Seo and Choo 2015) has been

shown to produce patterns of structural and functional

changes during cognitive impairment (Bora et al. 2010;

Nickl-Jockschat et al. 2012). The anterior insula is in the

SN, which is primarily made up of the dorsal anterior

cingulate and anterior insula cortices (Laird et al. 2011;

Thatcher 2012) playing a key role in sorting out relevant

stimuli, both external and internal (Haase et al. 2016;

Nguyen et al. 2016; Romero-Grimaldi et al. 2015); this

switching mechanism, between all three networks, aids in

focused attention to environmental events, allowing the

stimuli to be interpreted with increased importance (Hu

et al. 2015; Makovac et al. 2016; Qin et al. 2015; Srid-

haran et al. 2008). In pathological states, the SN not only

is impaired in its ability to sufficiently switch between the

CEN and the DMN, but it inappropriately assigns

importance to inconsequential events or too little impor-

tance to significant events, both internal and external

(Greicius et al. 2009) thereby producing deregulated sig-

nals of pain, anxiety, and/or other negative states (Yang

et al. 2012).

The CEN includes the dorsolateral prefrontal cortex and

the posterior parietal cortex (Menon 2012; Sridharan et al.

2008). Its key roles include maintenance of working

memory, goal-directed behavior, judgment and decision-

making, activating during executive functioning, then

deactivating during the self-referential thought including

autobiographical episodic memory and mentation of the

DMN (Kim et al. 2016; Varela 2014). The DMN, the most

studied network, characterizes basic neural activity which

negotiates self-referential thought, mentation, and intro-

spection (McCormick et al. 2013), decreasing activity with

task demands (Bonnelle et al. 2011, 2012). The DMN is

metabolically ‘expensive,’ involving a high number of

brain regions, and is implicated independently in a number

of neurocognitive disorders (Bonnelle et al. 2011, 2012;

Crone et al. 2011; Damoiseaux et al. 2006, 2008). Deficits

in this process may play a substantial role in neurocogni-

tive disorders (Menon 2011; Putcha et al. 2015), creating

phenotypic deficits in executive functioning (memory,

information processing speed, learning capability, etc.) as

well as the ability to self-reflect and process personal

information (Menon 2012).

The CEN is engaged during external cognitive tasks

(e.g. planning, attention, adaptive cognitive processes to

meet environmental demands) (Varela 2014) and is nega-

tively correlated with DMN activity (Putcha et al. 2015).

The SN is involved in awareness of body states (Chiong

et al. 2013; Menon and Uddin 2010) and in switching states

between the DMN and CEN (Daniels et al. 2010). Taken
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together, in neurocognitive disorders, the 3 networks pre-

sented here, display deficits in access, commitment, and

separation of resources (Greicius et al. 2003, 2004; Gre-

icius and Menon 2004).

The purpose of the present study was therefore to first

examine the differences in cortical source density between

patients with ME and healthy controls, then using the same

individuals, assess lagged phase synchronization (or phase

lock) in the same individuals, within the Menon Triple

Network model. We hypothesized that abnormal neural

function would be evidenced by dysregulated rhythms in

the delta, theta and/or alpha frequency bands. Based on

previous work finding dysregulation in these bands using

source localization methods (Canuet et al. 2011; Flor-

Henry et al. 2010; Lehmann et al. 2012; Sherlin et al.

2007). Given its high sensitivity and specificity with pre-

cise localization, eLORETA (Pascual-Marqui et al. 2011a)

was chosen to extract the most clinically relevant infor-

mation from the QEEG data. eLORETA lagged phase

synchronization was used to assess functional connectivity

within the triple network model, due to previous observa-

tions of slowed phase lock duration in this population (Zinn

et al. 2016). We also sought to determine whether the

eLORETA lagged phase synchronization may be a viable

tool in the study of ME in clinical applications to aid in the

diagnosis and treatment planning.

Method

Participants

Eighteen adults were included in this study (9 individuals

with ME, 9 healthy controls) ranging in age from 23 to

79 years and the mean age was 42.4 years (SD = 20.5).

There were 3 males and 15 females, 17 participants were

right handed, and all participants were Caucasian. All

participants visited the DePaul University Center for

Community Psychology Research. The ME group met the

Canadian Clinical Criteria (Carruthers et al. 2003) and had

been diagnosed with ME (some physicians used the term

CFS). No participants were taking medications that would

affect the EEG.

Materials and Procedure

Eyes-closed, resting state EEG was recorded for 5 min

using the Discovery 19-channel acquisition amplifier

(BrainMaster Technologies, Bedford, Ohio) with Neu-

roguide (Applied Neuroscience, Inc.) software (version

2.8.5) from 19 scalp electrode locations (Fp1, F3, F4, F7,

F8, Fz, C3, C4, Cz, P3, P4, Pz, T3, T4, T5, T6, O1, O2)

positioned according to the international 10/20 system

using standardized electrode caps (Jurcak et al. 2007)

employing passive electrodes for the linked ears references

(2). During electrode preparation, impedances for all sites

were maintained below 5 kX. Participants were trained to

minimize artifact by relaxing muscles in their forehead,

jaws, and face to the best of their ability while they

observed corresponding changes in the raw EEG. Each

participant was seated upright in a comfortable chair in a

well-lit room. Participants were given instructions to ‘‘relax

to the best of your ability while keeping your eyes closed

until the recording session has ended.’’ EEG data were

acquired at a 256 Hz sampling rate and filtered offline

between 1 and 40 Hz. Deartifacting was conducted as

follows: first, by visually inspecting and manually editing

to remove any visible artifact. Then, using Neuroguide

automated Z-score artifact rejection algorithms, set for

high sensitivity as well as amplitude selection set at 2

standard deviations for immediate exclusion of EEG seg-

ments, eye movement, muscle, and drowsiness artifact

were eliminated. Third, a second visual inspection and

manual removal of the artifact was done by the EEG

technician. Since this study was directed toward under-

standing changes in phase relationships of the original

time-series data, independent components analysis was not

used. The methodological problem of distorting time and

phase relations present in the original time series from

using ICA/Regression procedures has been empirically

validated in several studies (Castellanos and Makarov

2006; Kierkels et al. 2006; Wallstrom et al. 2004). Only

epochs with[95 % split-half reliability and[90 % test–

retest reliability coefficients computed by Neuroguide with

total measurement for at least 1 min were subjected to the

analysis. Split-half reliability is the ratio of variance

between the even and odd seconds of the time series of

selected digital EEG. Test–retest reliability is the ratio of

variance between the first half versus the second half of the

selected EEG segments (Thatcher 2012). For each partic-

ipant, artifact-free data were then exported to text files

containing 2-s EEG segments with a 75 % cosine taper

window to minimize leakage (Sterman and Kaiser 2000).

Further procedures were performed on the exported surface

EEG data using LORETA-KEY software (R. Pascual-

Marqui 2015) as freely provided by the Key Institute for

Brain-Mind Research, University Hospital of Psychiatry,

Zurich at http://www.uzh.ch/keyinst/loreta.htm.

eLORETA Source Localization

Eyes-closed resting EEG data were analyzed using

eLORETA to compute the 3-dimensional distribution of

intracortical brain electrical activity (Pascual-Marqui 2007;

Pascual-Marqui et al. 2011b). The eLORETA inverse

solution has zero localization error under ideal, noise-free
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conditions and the solution space has a volume of 6239

voxels at 5 mm3 spatial resolution. Computations of cortical

current source density are restricted to unambiguous cortical

grey matter (Mazziotta 2001) using Montreal Neurological

Institute (MNI) coordinates for the significantly active

regions of interest with neuroanatomical labels and Brod-

mann areas based on ‘‘corrected’’ Talairach coordinates

(Lancaster et al. 2000; Talairach and Tournoux 1988).

Implementation is based on a 3-shell spherical head model

and EEG electrode coordinates derived from spherical and

realistic Talairach head geometry (Towle et al. 1993). A

detailed report of this inverse solution, together with the

proof of its exact zero-error localization property, can be

found in an article by Grech et al. (2008). eLORETA func-

tional images of current source density was computed from 1

to 40 Hz for the following nine frequency bands: delta

(1–3 Hz), theta (4–7 Hz), alpha-1 (8–10 Hz), alpha-2

(10–12 Hz), alpha (8–12 Hz), beta-1(13–18 Hz), beta-2

(19–21 Hz), beta-3 (22–30 Hz) and gamma (30–40 Hz).

Functional Connectivity Analysis

Cortical regions of interest (ROIs) within each of the core

neurocognitive networks were defined a priori, chosen on

the basis of previously published research on resting-state

networks (Raichle 2011) derived from BOLD fMRI signals

(coordinates shown in Tables 1, 2, 3). All connectivity

analyses were conducted within the ROI’s specific to the

network being analyzed. Each ROI under investigation was

assigned one 5-mm3 voxel and all of its nearest adjacent

voxels (5 9 5 voxels/15 9 15 mm3 maximum) to repre-

sent each corresponding Brodmann area. To conduct the

functional connectivity analysis, we used eLORETA to

evaluate group differences in lagged phase synchronization

for all nine frequency bands between each of the 6 pairs of

ROIs within the SN (135 connections), 6 pairs of ROI’s

within the CEN (135 connections), and within 7 pairs of

ROI’s in the DMN (189 connections), for each of the nine

frequency bands (total ROIs X 9 = n connections). We

chose lagged phase synchronization to assess the functional

similarity in the multivariate time series of signaling

between all pairs of regions of interest within each net-

work. Lagged phase synchronization measures the

nonlinear dependence between two signals in the frequency

domain while correcting for the instantaneous zero-lag

component to remove artifact. This phase synchrony cor-

rection is necessary to exclude contamination due to non-

physiological effects, and physics artifact from low spatial

resolution and volume conduction. Therefore, lagged phase

synchronization is considered to be an index of true

physiological functional connectivity information (Pascual-

Marqui et al. 2011b). Lagged phase synchronization was

calculated for each participant from 1 to 40 Hz in the

following nine frequency bands: delta (1–3 Hz), theta

(4–7 Hz), alpha-1 (8–10 Hz), alpha-2 (10–12 Hz), alpha

(8–12 Hz), beta-1(13–18 Hz), beta-2 (19–21 Hz), beta-3

(22–30 Hz) and gamma (30–40 Hz) for each network. This

produced a text output file for each person with a corre-

lation matrix showing columns equal to the number of

ROIs, and rows equal to the number of time frames.

eLORETA Statistics and Multiple Comparison Corrections

The eLORETA software package was used to evaluate

group differences in current source density in cortical

source localization between groups within each frequency

band. To create three-dimensional statistical images for all

nine frequency bands, we conducted voxel-by-voxel inde-

pendent sample F-ratio-tests to evaluate the differences,

based on eLORETA log-transformed current source den-

sity power. To control for potential global experimental

effects, a subject-wise normalization was performed to

scale the data for each subject by dividing the value of

every single voxel by the total power of all voxels of each

image. Source voxels with significant differences were then

identified using a nonparametric permutation/randomiza-

tion procedure (Fisher 1971), with a threshold set at the

0.05 probability level. To control for Type 1 error, we

applied a statistical non-parametric mapping (SnPM) pro-

cedure to estimate the empirical probability distribution

and find the ‘‘maximal-statistic’’ at the 95th percentile

under the null hypothesis. SnPM has been shown elsewhere

to be effective in controlling the Type I error in neu-

roimaging studies (particularly when evaluating electro-

physiological data) without the need to rely on Gaussianity

(Holmes et al. 1996; Nichols and Holmes 2002). Another

Table 1 eLORETA

coordinates used for default

mode network regions of

interest (adapted from Raichle

2011)

Orientation Brodmann area X, Y, Z coordinatesa Neuroanatomical label

Left medial 23 0, -52, 27 Posterior cingulate

Left 9 -1, 54, 27 Medial frontal gyrus

Left 39 -46, -66, 30 Left angular gyrus

Right 39 49, -63, 33 Right angular gyrus

Left 21 -61, -24, -9 Middle temporal gyrus

Right 21 58, -24, -9 Middle temporal gyrus

a x,y,z coordinates provided in MNI space. Neuroanatomical labels taken from eLORETA
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advantage of permutation strategies is that they can be

applied to any statistic (t-tests, r values, F-ratios) to find its

critical probability value under the null hypothesis. In our

study, we utilized eLORETA software to compute 5000

data randomizations to create an approximate permutation

distribution needed to determine the critical threshold value

at the p = 0.05 alpha level for the observed log of F-ratio

statistic to correct for Type 1 error across all voxels and for

all frequencies. The initial procedure described here, the

use of SnPM for creating eLORETA single-voxel statistical

images, has been confirmed in studies (Anderer et al. 1998;

Pascual-Marqui et al. 1999). The value for the critical

threshold is then entered into the ‘‘scale-max’’ parameter of

the LORETA viewer for showing the comparative analysis

with positive/negative color coded significant statistical

values pertaining to the ‘‘surviving’’ voxels (those rejecting

the omnibus null hypothesis). SnPM procedures in

eLORETA also perform exceedance proportion tests to for

determining the critical probability thresholds for supra-

threshold voxels based on spatial extent for cluster-based

inference (cluster statistics). This approach yields greater

sensitivity over the singe-voxel test while trading off

specificity.

For the functional connectivity analysis, eLORETA

performed using an independent sample t-tests for gener-

ating t-statistic values of brain connectivity. The ROI’s for

each network can be seen in Tables 1, 2, and 3. As men-

tioned above, we applied the same permutation/random-

ization strategy (SnPM) with 5000 randomizations to find

the critical probability thresholds at significant alpha levels

and correct for Type 1 error.

Results

Source Analysis Using eLORETA

To capture the spatial extent of cortical source activations,

statistical images were assessed for cluster-wise signifi-

cance (Nichols and Holmes 2002). Independent groups

t-tests were performed to compare group differences in all

6239 cortical grey matter voxels within the entire eLOR-

ETA solution space. Deviant current source density values

were found in alpha (ME: 0.065, HC: 0.429) and alpha-2

bands (ME: 0.075, HC: 0.305), (log-F-ratio thresh-

old = -1.65, p = 0.033, two-tailed, corrected) in the

bilateral parietal, occipital and posterior temporal lobes

(Figs. 1, 2). No other significant differences or significant

relationships in source localization were found between the

patient and control groups in the above analyses with

respect to the delta, theta, beta or gamma frequency bands

as defined in this study.

Functional Connectivity Analysis Using eLORETA

In the assessment of the triple network model, functional

connectivity in patients with ME compared with healthy

controls showed significantly decreased lagged phase

synchronization for Delta, Alpha, and Alpha-2 in most

cortical regions: DMN (threshold: t = -1.84; p = 0.021,

one-tailed, corrected), the SN (threshold: t = -1.9;

p = 0.037, one-tailed, corrected), and the CEN (threshold:

t = -1.36; p = 0.024, one-tailed, corrected) (Figs. 3, 4, 5,

6, 7, 8). One-tailed tests were chosen a priori due to

Table 2 eLORETA

coordinates used for central

executive network regions of

interest (adapted from Raichle

2011)

Orientation Brodmann area X, Y, Z coordinatesa Neuroanatomical label

Left medial 8 0, 24, 46 Medial frontal gyrus

Left 8 -33, 22, 53 Superior frontal gyrus

Left 10 -44, 45, 0 Inferior frontal gyrus

Right 10 44, 45, 0 Inferior frontal gyrus

Left 40 -50, -51, 45 Inferior parietal lobule

Right 40 50, -51, 45 Inferior parietal lobule

a x,y,z coordinates provided in MNI space. Neuroanatomical labels taken from eLORETA

Table 3 eLORETA

coordinates used for salience

network regions of interest

(adapted from Raichle 2011)

Orientation Brodmann area X, Y, Z coordinatesa Neuroanatomical label

Left medial 32 0, 21, 36 Cingulate gyrus

Left 10 -35, 45, 30 Middle frontal gyrus

Right 10 32, 45, 30 Middle frontal gyrus

Left 13 -41, 3, 6 Insula

Right 13 41, 3, 6 Insula

Left 40 -62, -45, 30 Supramarginal gyrus

Right 40 62, -45, 30 Supramarginal gyrus

a x,y,z coordinates provided in MNI space. Neuroanatomical labels taken from eLORETA
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evidence of cortical hypofunction found in our source

analysis in addition to our prior investigations (Zinn et al.

2014a, b).

Discussion

In the present study, we applied two new methodological

approaches to investigate resting-state neurological differ-

ences in people with ME compared to healthy controls

(source analysis and functional connectivity analysis).

First, abnormalities in current source densities were found

with our patient group, displaying decreased alpha and

alpha-2 current sources primarily in the bi-lateral parieto-

occipital region (Figs. 1, 2). Alpha rhythm, the dominant

oscillation in the human brain, is especially prominent in

the posterior regions, representing a distinctive feature of

the normal brain in the waking resting state. The alpha

rhythm has been shown to modulate inhibition, timing,

attention, memory processes including consolidation,

detection of irrelevant stimuli, and information processing

speed (Capotosto et al. 2009; Ishii et al. 2010; Klimesch

Fig. 1 eLORETA source current density in Alpha 8–12 Hz in ME patients compared to healthy controls
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1996, 1997, 1999; Klimesch et al. 1997, 2010; Schabus

et al. 2011). Abnormalities in alpha are typically seen in

the parietal-occipital regions which can represent signs of

cerebral dysfunction in neurocognitive disorders (Babiloni

et al. 2014). Many of these symptoms corroborate those

commonly reported by patients with ME, especially the

slowed information processing speed.

The alpha frequency band is currently regarded as

important in cognitive function due its strong correlation

with general cognitive abilities. Alpha activity matures in

early adolescence (Simkin et al. 2014; Thatcher et al. 2008),

declines in old age (Klimesch 2012) and is a reliable pre-

dictor of many aspects of memory (Angelakis et al. 2004;

Vogt et al. 1998). The alpha frequency band has reliably

demonstrated predictive power of individual differences in a

large number of studies involving cognitive and perceptual

processes (Osaka 1984; Osaka et al. 1999), including visual

encoding (Klimesch et al. 2011), response selection (Kli-

mesch et al. 2011) and motor preparation (Holz et al. 2008;

Sauseng et al. 2009). Taken together, studies such as these

find a strong positive relationship between the alpha fre-

quency and executive functioning. For example, Klimesch

Fig. 2 eLORETA source current density in Alpha 2, 10–12 Hz in ME patients compared to healthy controls
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Fig. 3 CEN high Alpha 2 (10–12 Hz). eLORETA wire diagram indicating cortical regions with significantly decreased alpha 2 lagged phase

synchronization in patients with Myalgic Encephalomyelitis compared to healthy controls

Fig. 4 CEN delta (1–3 Hz). eLORETA wire diagram indicating cortical regions with significantly decreased delta lagged phase synchronization

in patients with Myalgic Encephalomyelitis compared to healthy controls
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Fig. 5 SN high Alpha 2 (10–12 Hz). eLORETA wire diagram indicating cortical regions with significantly decreased alpha 2 lagged phase

synchronization in patients with Myalgic Encephalomyelitis compared to healthy controls

Fig. 6 SN Delta (1–3 Hz). eLORETA wire diagram indicating cortical regions with significantly decreased delta lagged phase synchronization

in patients with Myalgic Encephalomyelitis compared to healthy controls

292 Appl Psychophysiol Biofeedback (2016) 41:283–300

123



Fig. 7 DMN high Alpha 2 (10–12 Hz). eLORETA wire diagram indicating cortical regions with significantly decreased alpha 2 lagged phase

synchronization in patients with Myalgic Encephalomyelitis compared to healthy controls

Fig. 8 DMN Delta (1–3 Hz). eLORETA wire diagram indicating cortical regions with significantly decreased delta lagged phase

synchronization in patients with Myalgic Encephalomyelitis compared to healthy controls
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et al. (1993) characterized alpha phase synchronization as a

control process that organizes top-down modulation of

working memory and attention as well as access to long-

term memory. Other authors find relationships between

human memory, alpha amplitude and network dynamics

(Hughes and John 1999). The effects of modulation of

cognition within the alpha band are strong regardless of the

nature or direction of the cognitive domain assessed. Our

source density finding showing reduced alpha reflects the

types of cognitive impairment that it is associated with (e.g.

memory, attention, concentration, information processing

speed). Furthermore, alpha rhythms are known to have

involvement in ME (Billiot et al. 1997).

Specific locations of the reduced alpha band activity

included the cuneus region, precuneus, lingual gyrus,

posterior cingulate, parahippocampal gyrus, fusiform

gyrus, superior parietal lobule, premotor and primary

motor areas (precentral gyrus), middle temporal gyrus,

inferior temporal gyrus, and angular gyrus. Taken together,

abnormal delta and alpha-2 rhythms in occipital, parietal,

temporal, and limbic regions provide objective evidence

for ME neurocognitive symptoms with disruption to the

perception–action cycle (Fuster 2009) and associated sen-

sorimotor deficits.

Sherlin et al. (2007) found increased delta in the left

uncus, left parahippocampal gyrus, and increased theta in

the cingulate gyrus and right superior frontal gyrus, and in

2014, Zinn et al. found increased delta in over 50 % of the

frontal-limbic regions in the superior frontal gyrus, entire

cingulate gyrus, medial frontal gyrus, orbito-frontal cortex,

middle frontal gyrus, insula, superior temporal gyrus and in

the rectal gyrus. Our overall findings extended previous

ME neuroimaging research by providing a more complete

analysis of neurocognitive deficits. First, alpha, alpha 1,

and alpha-2 current source density was deviant from nor-

mal in patients with ME involving the entire occipital lobe,

extending into portions of the parietal, temporal and limbic

lobe (Figs. 1, 2). The divergent results most likely indicate

severity levels of disease and individual differences in

brain pathology.

Second, there was significantly reduced lagged phase

synchronization in the DMN, the SN and the CEN in delta

and alpha bands, supporting the triple network model.

Evidence of psychomotor slowing in ME was found by

Van Den Eede et al. (2011) who demonstrated delayed

reaction time and movement time in patients with ME, a

confirmation of earlier ME studies showing psychomotor

slowing, persistent motor impairment, and impaired corti-

cal motor area excitability in patients (Gaudino et al. 1997;

Majer et al. 2008; Prasher et al. 1990). Taken together,

these studies support our finding of hypoconnectivity in

lagged phase synchronization in all three networks of the

Menon triple network model in the occipital, parietal,

posterior cingulate, and posterior temporal lobes. Func-

tional connectivity disruptions between nodes and hubs of

all three networks in the triple network model reveal the

presence of decreased phase lag synchronization affecting

the delta and alpha bands. This is consistent with other

neuropsychological studies finding significantly decreased

delta band connectivity using both linear (coherence)

(Burroughs et al. 2014) and nonlinear (phase lag synchro-

nization) measures (Bosma et al. 2009; Cooray et al. 2011;

Zeng et al. 2015). Decreased functional connectivity within

the SN, DMN and CEN could indicate a biomarker if

commonly found in patients with ME. Finding support for

the triple network model has far-reaching implications for

ME, given that it may explain many of the symptoms

reported by patients. Some of those symptoms include the

feelings of derealization (brain fog) commonly experienced

in the disease. Other implications include issues in complex

spatial patterns, deductive reasoning, mental navigation,

visual rotation and similar spatial issues. ME patients are

known for their inability to drive a car, and often become

lost even in their own neighborhood. Hypoactive mental

states interrupt consciousness, sleep and can bring on

vegetative states, underpinning changes in behavior and

general self- and other-awareness (Ramos Reis et al. 2013).

These combined findings present support for inefficient

allocation of resources dependent on three factors: (1) that

the incomplete switching between the DMN and CEN were

likely present (but not directly measured). Recent studies

have observed the fluctuations in activation of all networks,

including the SN in both task-based and task-free states.

For example, in normal, healthy individuals, switching

occurs whenever the task performance occurs and is cor-

related with the CEN. However, during pathological states,

the switching effect is compromised, creating significant

group differences between engagement and disengagement

of the CEN (Daniels et al. 2010). In this manner, aberrant

switching would prevent optimal cognitive states in our

sample. (2) We found weakened coupling within the SN

suggests hypersensitivity within many domains, another

facet of ME symptom presentation. Though we did not

measure hypersensitivity, it is an exceedingly common

complaint of patients with ME. (3) Due to aberrant SN

switching and weakened connectivity, the DMN would

likely never be fully active, resulting in patients having

considerable trouble engaging in self-reflection and men-

tation, thereby interrupting normal brain dynamics within

moving time windows. We believe this may contribute to

‘‘brain fog,’’ slowed information processing speed and

possibly deregulation in other aspects of cognitive func-

tion. Overall, these deficits would be seen as cognitive

decline.
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Limitations

Although the present findings taken from eLORETA neu-

roimaging method reveal dysregulation in the alpha band,

as well as support for the triple network model, we

acknowledge limitations of this study. First the eLORETA

neuroimaging method can only examine cortical areas but

does not look at subcortical structures such as the

hypothalamus, thalamus, amygdala, hippocampus, basal

ganglia, cerebellum, and brainstem. However, cortical

pathology within brain circuits indirectly implicates these

subcortical structures by inference. For this pilot study,

results should be cautiously interpreted because of the

relatively small sample size. Future studies should include

larger sample sizes with more experimental groups such as

a group with co-morbid depression. Future research should

also include neuropsychological measures for comparison

to connectivity findings, such as measures of sleep distur-

bance and executive functioning. Such measures would be

most useful if they are found to predict the most commonly

found pathological states in patients with ME, such as

slowed information processing speed, memory and con-

centration disturbances and overall feelings of derealiza-

tion and depersonalization.

Conclusion

The present study suggests that a clear pattern of sub-

stantial CNS hypoactivation in ME patients, finding sup-

port for aberrant source localization. Current ME research

points to a common finding of cognitive slowing in ME and

we identified this with quantifiable reductions in delta and

alpha frequency bands as well as relating delta and alpha

cortical sources to reduced functional connectivity. By

finding support for the Menon Tripe Network model of

pathology, we provide one possible explanation for known

cognitive deficits in ME, such as incomplete engagement of

executive functioning in the awake state.

Our study used eLORETA to explore EEG indices of

ME pathophysiology with findings implicating profound

CNS involvement. Our results support the hypothesis that

there is significant brain dysregulation overall seen in the

parietal, occipital, posterior temporal, posterior cingulate

and parahippocampal gyrus. Dysregulation is also present

within the 3 core networks of the human brain as defined

by the triple network model, within ME. Based on high

concordance of our findings with other ME source analysis

studies, it is possible that eLORETA can provide clinically

relevant information about patients with ME, and may be

therefore a viable tool for use in clinical as well as research

settings.
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