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Environmental factors and pathological conditions can result in the 
alteration of transcription of many genes through modifications 
of chromatin structure, including DNA methylation and histone 
acetylation, resulting in stable phenotypes1,2. Chromatin remodeling 
dynamically modulates, either positively or negatively, the transcrip-
tional activity of target genes3. Histone acetylation increases gene 
transcription by decondensing chromatin structure, which allows 
increased accessibility of transcriptional machinery to DNA for 
transcriptional activation4. Epigenetic mechanisms are implicated in 
adaptive responses to many neurological disorders in which persistent 
neurochemical stimuli are present5,6. For example, histone acetylation 
crucially regulates synaptic plasticity and memory formation7, and 
drugs of abuse alter chromatin structure through histone acetyla-
tion and phosphorylation, leading to maladaptive changes that cause  
drug addiction8–10.

Chronic pain is a neurological disease caused by nerve injury and 
persistent tissue inflammation under various pathological condi-
tions such as cancer and neurodegenerative diseases11. Distinct 
from acute pain, chronic pain could induce long-term synaptic and 
 cellular maladaptive changes, involve dynamic memory processes and 
cause characteristic emotional disorders including depression, stress 
and anxiety11–14. The molecular mechanisms underlying chronic 
pain development remain poorly understood. The characteristics 
of chronic pain are strongly suggestive of epigenetic modulations. 
Evidence is emerging in animal pain models that show antinociceptive 
effects of HDAC inhibitors15,16 and epigenetic regulation of C-fiber 
dysfunction in hypoesthesia17. However, how epigenetic mechanisms 
operate and what the target genes are in chronic pain development are 
largely unknown. In this study, we explored persistent pain-induced 
histone modifications in mouse and rat models of inflammatory and 

neuropathic pain. Whereas spinal adaptive mechanisms are important 
in chronic pain, our study focused on the brainstem nucleus raphe 
magnus (NRM), a crucial supraspinal site for maintenance of pain 
hypersensitivity in behavioral states of chronic pain18,19.

RESULTS
Inflammatory pain increases global histone acetylation
We first examined global histone acetylation levels in rats with per-
sistent inflammatory pain induced by complete Freund’s adjuvant 
(CFA)20. CFA induced persistent pain sensitization (hyperalgesia) 
(Fig. 1a). Sampling NRM tissues at different time points (4 h, 12 h, 
1 d, 3 d and 6 d after CFA injection), we found that global histone 
H3 acetylation was unchanged until 1 d after injection, from which 
point it showed a continued increase for the following 6 d (Fig. 1b,c). 
Total H3 protein levels were unchanged during this period. In tissues 
taken at 3 d after injection (representing persistent pain), both histone 
H3 and H4 acetylation levels were increased but the total H4 protein 
level was not (Fig. 1d–f). We obtained similar results by ELISA for H3 
acetylation at 3 d after injection (171.4% ± 34.1% increase (mean ±  
s.e.m.), n = 7, P < 0.05). These results suggest that persistent pain (last-
ing for >1 d), but not acute pain (lasting for hours), involves global 
histone hyperacetylation in the NRM.

Persistent pain decreases GABAergic synaptic function
Chronic pain is presumably caused partly by sustained activation of 
descending pain-facilitatory pathways from NRM18. This neuronal 
hyperactivation could result from loss of inhibitory GABA functions 
in the NRM. In NRM neurons from CFA-injected rats, we found that 
the slope of the input-output curve for GABAergic inhibitory post-
synaptic currents (IPSCs) was similar to that in controls at 4 h after 
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Chronic pain is a common neurological disease involving lasting, multifaceted maladaptations ranging from gene modulation to 
synaptic dysfunction and emotional disorders. Sustained pathological stimuli in many diseases alter the output activities of certain 
genes through epigenetic modifications, but it is unclear how epigenetic mechanisms operate in the development of chronic 
pain. We show here that in the rat brainstem nucleus raphe magnus, which is important for central mechanisms of chronic pain, 
persistent inflammatory and neuropathic pain epigenetically suppresses Gad2 (encoding glutamic acid decarboxylase 65 (GAD65)) 
transcription through histone deacetylase (HDAC)-mediated histone hypoacetylation, resulting in impaired g-aminobutyric acid 
(GABA) synaptic inhibition. Gad2 knockout mice showed sensitized pain behavior and impaired GABA synaptic function in their 
brainstem neurons. In wild-type but not Gad2 knockout mice, HDAC inhibitors strongly increased GAD65 activity, restored GABA 
synaptic function and relieved sensitized pain behavior. These findings suggest GAD65 and HDACs as potential therapeutic targets 
in an epigenetic approach to the treatment of chronic pain.
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injection (acute pain) but decreased at 3 d after injection (persistent 
pain) (Fig. 2a,b). We saw no difference in the IPSC slopes from hippo-
campal neurons (Fig. 2c).

For the synaptic site of this decrease, we found that the paired-
pulse ratio, which is inversely related to presynaptic neurotransmitter 

release21,22, was unchanged at 4 h but increased at 3 d after injection 
(Fig. 2d–f), and miniature IPSC (mIPSC) frequency, but not amplitude, 
was reduced at 3 d but not at 4 h after injection (Fig. 2g–j), indicating 
decreased presynaptic GABA release. Thus, persistent pain decreases 
presynaptic function of GABA synapses in NRM neurons.
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Figure 1 Persistent inflammatory pain induces time-dependent hyperacetylation of histones H3 and H4. (a) Time course for the development of 
persistent pain sensitization induced by CFA and for saline controls, as measured by the paw-withdrawal test (n = 6 rats in each group). (b,c) Western 
blots (b) and summarized data (c) (n = 5–9 rats for each group) of global acetylated histone H3 (AcH3) and total H3 proteins, normalized to β-actin,  
in tissues of rat NRM taken at various time points after CFA injection. (d) Western blots of AcH3 and acetylated histone H4 (AcH4) 3 d after CFA 
injection. (e,f) Western blots (e) and summarized results (f) (n = 7 rats for each group) of AcH4 and total H4 after CFA injection. Data are expressed as 
mean ± s.e.m. *P < 0.05, **P < 0.01. BL, baseline; sal, saline.
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Figure 2 Persistent pain decreases GABAergic synaptic function by inhibiting presynaptic GABA release. (a) Representative traces of GABA IPSCs 
evoked by various stimulation intensities in NRM neurons from a saline-injected rat and a CFA-injected rat at 4 h and 3 d after injection. (b) A plot of 
input-output curves for IPSC amplitudes in neurons from the three treatment groups in a. The slopes were as follows: saline, 90.4 ± 11.5 pA 0.1 mA−1, 
n = 13; CFA after 4 h, 88.7 ± 12.9 pA 0.1 mA−1, n = 26, P > 0.05; and CFA after 3 d, 53.6 ± 10.5 pA 0.1 mA−1, n = 35, P < 0.01. (c) A similar  
input-output plot of IPSCs from hippocampal CA1 neurons. The slopes were as follows: saline, 98.1 ± 14.8 pA 0.1 mA−1, n = 15; and CFA after 3 d, 
102.7 ± 16.2 pA 0.1 mA−1, n = 16, P > 0.05. (d) Representative IPSC pairs evoked by two stimuli (100 ms apart) in NRM neurons from the three 
groups of rats. (e) Two representative IPSC pairs from the two indicated groups are superimposed and scaled to the amplitude of the first IPSC. (f) Group 
data of changes in the paired-pulse ratios in the three groups (n = 15–35 cells for each group). (g) Representative traces of spontaneous miniature 
IPSCs (mIPSCs) in neurons from the three groups. (h–j) Distribution plots of mIPSC frequency (h) and amplitude (i) from neurons of each group and 
their group data (j) (n = 16–20 cells). Data are expressed as mean ± s.e.m. *P < 0.05, **P < 0.01.
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Persistent pain epigenetically reduces GAD65 expression
GAD65 is a GABA synthetic enzyme that preferentially synthesizes  
GABA in the synaptic terminal for vesicle release, whereas GAD67 pref-
erentially synthesizes cytoplasmic GABA23,24. We used chromatin immuno-
precipitation (ChIP) assays to determine H3 acetylation levels in Gad2  
promoter regions under pain conditions. We found that H3 acetylation 
in the region of −646 to −484 bp upstream of the transcription start site 
(TSS) of Gad2 was reduced in rats at 3 d after CFA injection but not at 
4 h afterward (Fig. 3a). Systemic treatment with the HDAC inhibitors 
trichostatin A (TsA) or suberoylanilide hydroxamic acid (SAHA), which 
increase histone acetylation nonselectively25, increased the pain-reduced 
H3 acetylation level in the Gad2 promoter region and increased global 
H3 acetylation in the NRM of saline- and CFA-injected rats (Fig. 3a–c).  
At 3 d after CFA injection, acetylated H3 was also reduced in the Gad2 
promoter region at −285 to −153 bp upstream of the TSS but not in 
regions <150 bp or >2 kb upstream (Fig. 3d).

We determined the relative levels of HDAC1 and HDAC2 (class I  
HDACs) and HDAC4 and HDAC5 (activity-dependent class II 
HDACs)26,27 present on the Gad2 promoter in NRM chroma-
tin preparations from rats at 3 d after CFA injection and found 
 chromatin-associated HDAC1, HDAC2 and HDAC4 marks, but 
not HDAC5 marks, in the Gad2 promoter (Fig. 3e). Additionally, 
the GAD65 mRNA level was decreased, and so was the GAD65 pro-
tein level (Fig. 4a–c). We saw no change in GAD65 expression 4 h 
after CFA injection. These reductions in GAD65 transcriptional 
and translational activities were completely reversed by treatment 
with TsA (Fig. 4a–c). TsA also increased GAD65 protein abundance 
in control rats to a lesser extent (Fig. 4d), suggesting a global TsA 
effect. Persistent pain decreased co-localization of GAD65 and 
 terminal protein synapsin I by 46% ± 10% (mean ± s.e.m.), and the 
co-localization was increased approximately twofold by TsA in NRM 
neurons (Fig. 4e). These results indicate that CFA-induced persistent 
hyperalgesia epigenetically suppresses Gad2 transcription in the NRM 
and that HDAC-inhibitor–induced global histone hyperacetylation 

can overwhelm this pain effect, increasing acetylation at the Gad2 
promoter and increasing its transcription.

Next, we examined Gad2 transcription in rats with spinal nerve 
ligation (SNL), another rodent model of chronic neuropathic pain 
that lasts for months28. We collected NRM tissues from rats with SNL 
and sham-operated control rats at 1 d (representing acute pain) and 
21 d (representing prolonged pain) after surgery (Fig. 4f). We found 
that the acetylated H3 level in the Gad2 promoter showed no change 
at 1 d but was reduced at 21 d after surgery (Fig. 4g). Moreover, both 
GAD65 mRNA and protein levels were decreased at 21 d but not 
at 1 d after surgery (Fig. 4g,h). Thus, both prolonged sensitization 
of neuropathic pain and inflammatory hyperalgesia epigenetically 
reduce Gad2 transcription.

Histone hyperacetylation increases GABA synaptic function
As expected from the above results of pain-reduced GABA synaptic 
function by epigenetic hypoacetylation at Gad2, treatment with TsA 
or SAHA augmented GABA neurotransmission, increasing the mIPSC 
frequency in neurons from CFA- and saline-injected rats (Fig. 5a).  
This suggests that GAD65 expression is important for GABA neuro-
transmission and that its epigenetic repression by persistent pain 
decreases (and its pharmacological augmentation by HDAC inhibitors  
enhances) GABA synaptic transmission.

Considering the nonselective, acetylation-promoting effects of 
HDAC inhibitors, we analyzed GABA IPSCs in the NRMs of Gad2 
knockout mice. We found the slope of the IPSC input-output curve to 
be reduced in neurons from Gad2−/− mice when compared with wild-
type mice (Fig. 5b). This indicates Gad2-deletion–induced reduc-
tion in GABA synaptic function, consistent with the effects of pain 
(Fig. 2b). Supporting a presynaptic function of GAD65, mIPSC fre-
quency, but not amplitude, was lower in neurons from Gad2−/− mice 
than in those from wild-type mice (Fig. 5c,d), indicating impaired 
presynaptic GABA release, also consistent with the effects of pain 
(Fig. 2g–j). Furthermore, in Gad2−/− mice, both TsA and SAHA failed 
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Figure 3 Persistent pain induces histone hypoacetylation at the Gad2 promoter.  
(a) Summarized data (n = 5 or 6 rats in each group) of AcH3 levels in the Gad2 
promoter region (−646 to −484 bp upstream of TSS) in NRM tissues from the 
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real-time PCR data from ChIP with antibodies specific to HDAC at the Gad2 promoter 
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expressed as mean ± s.e.m. *P < 0.05, **P < 0.01, ***P < 0.001.
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to increase mIPSC frequency (Fig. 5c,d), and the mIPSC amplitude 
was unaffected. Thus, it seems that HDAC inhibitors enhance GABA 
neurotransmission (Fig. 5a) by promoting histone acetylation at 
Gad2, as they lost this effect in Gad2−/− mice.

In examining potential GAD67 roles in pain-reduced presynaptic 
GABA function despite its predominant cytoplasmic localization, we 
found that the acetylated H3 level in the three Gad1 (encoding GAD67) 
sequence regions we looked at was unchanged at 3 d after CFA injection 
(Fig. 5e and Supplementary Fig. 1). The GAD67 mRNA level was also 
unchanged. However, CFA produced a small but significant decrease in 
GAD67 protein expression (Fig. 5e,f). TsA increased GAD67 protein levels  
in CFA- and saline-injected rats at 3 d after injection (Supplementary 
Fig. 2). Thus, it seems unlikely that CFA has substantial effects on Gad1 
transcription through histone acetylation, but cytosolic GAD67 may 
have some role in CFA-induced pain sensitization.

Histone hyperacetylation relieves pain
We examined the neuronal excitability of two previously characterized 
classes of NRM neurons: µ-opioid receptor (MOR)-lacking and MOR-
expressing cells29. The latter presumably comprises the descending 
pain-facilitatory system19,30. We found that MOR-expressing cells, 
identified by hyperpolarization with the MOR agonist [d-Ala2,  

N-MePhe4, Gly-ol]-enkephalin (DAMGO) (1 µM) (Fig. 5g), had a 
larger number of depolarization-evoked action potentials in CFA-
injected rats 3 d after injection than in control rats (Fig. 5g). We 
did not observe this difference in cells lacking MOR (Fig. 5h and 
Supplementary Fig. 3). Thus, the increased excitability of MOR-
expressing NRM cells may underlie the cellular mechanism for CFA-
induced activation of descending pain facilitation.

To determine whether GAD65-promoting HDAC inhibitors 
could alleviate pain, we conducted behavioral experiments in vivo. 
TsA repeatedly (once a day for 4 d) infused into the NRM attenuated 
CFA-induced hyperalgesia in a dose-dependent manner, as did SAHA 
(Fig. 6a–c). A single TsA infusion was ineffective (data not shown). 
Repeated TsA pretreatment before CFA injection failed to alter the 
effect of CFA at 4 h after injection (Fig. 6d), which excludes an effect 
of TsA on the acute effect of CFA.

Histone-hyperacetylation–induced pain relief requires GAD65
We obtained additional evidence supporting the role of GAD65 in 
the pain mechanism from behavioral experiments on Gad2−/− mice. 
Compared to wild-type mice, Gad2−/− mice had a lower baseline pain 
threshold, indicating a sensitized basal pain state (basal hyperalgesia) 
(Fig. 6e), consistent with CFA-induced hyperalgesia through epigenetic 
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inhibition of GAD65 expression. Furthermore, in Gad2−/− mice, similar 
NRM infusions of TsA could no longer ameliorate the sensitized pain 
behavior (Fig. 6e), further supporting the role of GAD65 in histone-
hyperacetylation–induced pain relief. To determine how Gad2−/− mice 
might respond to CFA differently, we treated them with CFA and found 
that, in addition to the basal hyperalgesia seen in Gad2−/− mice, CFA 
induced further pain sensitization to a level similar in amplitude to 
that in wild-type mice at 1 d after treatment (Fig. 6f). This indicates 
that this acute CFA effect is independent of GAD65 and may be medi-
ated by as-yet unidentified mechanisms. Notably, at 3 d after injection, 
the amplitude of hyperalgesia remained unchanged in wild-type mice 
but was partially recovered in Gad2−/− mice (Fig. 6f). The underlying 
mechanisms of this effect remain to be investigated.

Next, we reasoned that, if GAD65-suppression–induced loss 
of GABA synaptic inhibition contributes to pain hypersensitivity, 
pharmacologically promoting GABA inhibition under those condi-
tions should alleviate hyperalgesia. As predicted, in rats at 3 d after 
CFA injection, acute NRM infusion of the GABAA receptor agonist 
muscimol induced an antinociceptive effect (Fig. 6g). Therefore, like 
histone-hyperacetylation–mediated upregulation of GAD65 tran-
scription and GABA function, pharmacological activation of inhibi-
tory GABA function also can relieve pain.

Depression and proinflammatory cytokines
Chronic pain is often associated with psychophysiological disorders 
such as depression31. To determine the potential effects of depression, 

we treated SNL rats and sham-operated rats with the antidepressant 
drug fluoxetine for 21 d, a treatment that reverses depressive behavior 
in rodents32. We found that fluoxetine had no effect on the SNL-
reduced expression of NRM GAD65 protein (Supplementary Fig. 4), 
thus probably excluding a general effect of depression on GAD65 
expression in the NRM.

CFA is known to release pain-facilitating proinflammatory 
cytokines, including interleukin 1 (IL-1)33. We examined the effect 
of IL-1β on NRM GAD65 expression and pain threshold. IL-1β 
infused into the NRM decreased the pain threshold in naive rats 
acutely for about 4 h (Fig. 6h). Co-infusion of IL-1β and the IL-1 
receptor antagonist IL-1Ra largely blocked the IL-1β effect. However, 
unlike CFA-induced hyperalgesia, repeated NRM infusions of IL-1β 
did not produce lasting hyperalgesia over 3 d, although its acute effect 
remained (Fig. 6h). In NRM tissues from rats treated repeatedly with 
IL-1β, we found no change in GAD65 protein (Fig. 6i,j). Furthermore, 
repeated NRM infusions of IL-1Ra failed to block the CFA-induced 
reduction in GAD65 (Fig. 6i,j). These results indicate that, although 
proinflammatory cytokines are important in chronic pain develop-
ment33,34, NRM IL-1 is unlikely to have a major role in CFA-induced 
modulation of GAD65 expression and related pain mechanisms.

DISCUSSION
In rat and mouse models of chronic pain, we have shown that persist-
ent pain, but not acute pain, epigenetically suppresses the transcrip-
tion of Gad2 and consequently causes impaired inhibitory function 
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of GABAergic synapses in central pain-modulating neurons, contri-
buting to the development of persistent pain sensitization. These 
results are supported by observations in Gad2−/− mice showing 
impaired GABA synaptic function in the same neurons and having 
sensitized pain behavior. In addition, histone hyperacetylation over-
comes these molecular and synaptic changes by promoting Gad2 
transcription and GABAergic synaptic function, thereby relieving 
the sensitized behavior of persistent pain.

Chronic pain involves altered expression of many genes through 
unknown mechanisms35. In drug addiction, histone H3 and H4 acetyla-
tion modulates the expression of several genes that regulate transcrip-
tion, including Cdk5, Fos, Creb and ∆FosB8. In nerve-injury–induced 
hypoesthesia, C-fiber dysfunction is reportedly mediated by epigenetic 
upregulation of the transcriptional repressor neuron-restrictive silencer 
factor, but pain sensitization does not seem to involve upregulation of 
this factor17. Notably, HDAC inhibitors reduce inflammatory pain by 
upregulating spinal metabotropic glutamate 2 receptors16. The present 
study identifies Gad2 as an important target gene of histone modi-
fications induced by persistent pain conditions, providing a potential 
epigenetic mechanism for the development of chronic pain.

GAD65 is preferentially targeted to presynaptic terminals of cen-
tral neurons for synthesis of GABA within synaptic vesicles and is 
required for active GABA synaptic release23,24,36. Impaired GABA 
release would cause loss of GABAergic inhibition, leading to neuronal 
hyperactivation. For instance, nerve injury induces a loss of GABA 
inhibition in spinal neurons, and enhancing GABA synaptic inhibi-
tion is effective in relieving injury-induced pain37–39. Our results 

from rats and GAD65-deficient mice suggest that the persistent pain 
induced by inflammation and neuropathy downregulates GAD65 
transcription, causing impairment of GABA synaptic inhibition in the 
NRM and increasing the excitability of presumably pain-facilitating 
neurons. This is in line with recent reports that Gad2−/− mice show 
sensitized pain behavior40 and that viral delivery of Gad2 produces 
orofacial analgesia41. Given the multifaceted mechanisms of chronic 
pain, it is likely that other genes in addition to Gad2 also are targets of 
chronic pain-induced chromatin remodeling. This probably accounts 
for our observation of increased global histone acetylation by CFA, 
indicating increased activities of other genes that remain to be investi-
gated. Although the pain-induced changes in GAD65 transcription 
and GABA synaptic function indicate a likely neuronal locus, further 
studies are necessary to verify its localization within the nucleus of 
central neurons for pain-induced histone modification.

GAD67 is a GABA-synthesizing enzyme for cytoplasmic GABA 
and its tonic release from neurons23. Our data show a major role of 
presynaptic GAD65 in the pain mechanism, but this does not pre-
clude a role for cellular GAD67, particularly in pain-induced adap-
tive changes in neuronal excitability for sensitized pain behaviors. 
Although our results do not indicate pain-induced epigenetic modula-
tion of Gad1 through histone acetylation, GAD67 could participate 
in pain mechanisms by decreasing tonic inhibition among neurons 
through reducing the levels of cellular GABA, by reducing synaptic 
GABA through presynaptic effects or by compensatory changes in 
response to GAD65 deficiency. The detailed mechanisms by which 
GAD67 might play a role in pain warrants further study.
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How functionally distinct populations of NRM neurons adapt to 
chronic pain conditions and mediate sensitized pain behaviors in 
chronic pain remains unclear. Under normal conditions, opioids 
produce analgesia partly by reducing basal GABA transmission in 
NRM neurons, thereby activating the descending pain-inhibition sys-
tem29,42. Consistent with this, GABAA receptor antagonists applied 
to the NRM induce antinociception, whereas GABAA receptor ago-
nists produce pain sensitization43,44. However, under chronic pain 
conditions, considerable adaptive changes may have occurred both 
in GABA input activities on different classes of NRM neurons and 
in GABAA receptor properties. Our results indicate that the pain-
induced impairment of GABA synaptic inputs may preferentially 
affect and consequently hyperactivate MOR-expressing neurons. 
Activation of this neuron class presumably facilitates spinal pain 
transmission29,30, contributing to sensitized pain behaviors. A pain-
induced decrease in GABA neurotransmission has also been reported 
recently in amygdala neurons from a rat model of arthritic pain45. 
This GABA-impairment–induced pain sensitization is further sup-
ported by our behavioral results that enhancing GABA inhibition 
by activating NRM GABAA receptors produces an antinociceptive 
effect. Detailed molecular and cellular adaptations in GABA and 
glutamate synapses under chronic pain conditions are subjects of 
ongoing research.

Proinflammatory cytokines, released into the peripheral and central 
circulation by immune cells and glia in response to tissue inflam-
mation and trauma, cause augmented pain33,34, but the underlying 
cellular and molecular mechanisms of this process remain unclear, 
particularly in chronic pain states. Proinflammatory cytokines may 
contribute to the development of chronic pain by sustained release 
from their sources and by their sensitized signaling mechanisms in 
nociceptors and central neurons to augment pain responses after 
healing. Our observations of both the relatively acute hyperalgesic 
effect of IL-1β and the inability of repeated IL-1β administration in 
the NRM to change GAD65 expression indicate that this proinflam-
matory cytokine, at least in the NRM, is not substantially involved in 
the GAD65-mediated pain mechanisms that mediate prolonged pain 
behaviors induced by SNL and CFA.

A current common clinical problem is the transition from analgesic- 
responsive acute pain to chronic pain, of which some types are poorly 
responsive to currently available analgesics and often lead to long-
term neuropsychiatric disorders such as depression, stress and drug 
addiction10,12,46,47. Although multiple forms of neuronal plasticity 
have been identified for the pathogenesis of chronic pain13, the mech-
anisms underlying this crucial transition from acute pain to chronic 
pain remain poorly understood. Our findings of chromatin modifi-
cations emerging only days after pain development indicate that the 
epigenetic mechanism of Gad2 modulation might underlie the per-
sistent phase of these pain conditions, and this, together with changes 
in the expression of other genes, could be an important initial step 
in the transition that leads to the development of chronic pain and 
associated disorders. In this regard, drugs such as HDAC inhibitors 
that overcome the effects of persistent pain on the output activities 
of Gad2 and other target genes may serve as a new promising class of 
analgesics48, as they could collectively block the upstream cause of 
pain-induced alterations that lead to multiple system malfunctions 
and clinical symptoms during chronic pain development.

METHODS
Methods and any associated references are available in the online 
 version of the paper at http://www.nature.com/naturemedicine/.

Note: Supplementary information is available on the Nature Medicine website.
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ONLINE METHODS
Animals. Male Wistar rats, 9–14 d old or weighing 200–300 g, were used. 
Gad2−/− mice were obtained from Jackson Laboratories. All procedures  
involving the use of animals conformed to the guidelines by the University of 
Texas MD Anderson Cancer Center Animal Care and Use Committee.

Pain models. We injected CFA (40 µl) into a hindpaw of the rats to induce 
hyperalgesia of inflammatory pain20. We induced mechanical allodynia of 
neuropathic pain by ligating the left L5 and L6 spinal nerves as previously 
described28. We conducted pain tests as previously described21. We injected 
TsA (4 mg per kg body weight, in alcohol) or SAHA (40 mg per kg body weight, 
in DMSO) intraperitoneally once daily for 4 d. We harvested NRM tissues 4 h 
after the last injection.

Histone proteins extraction and western blotting. We modified the protocol 
for histone protein extraction from a previous report49. After tissue homogeni-
zation and lysate centrifugation, we separated the acid supernatant and nuclear 
pellet and added acetone to the pellet. We mixed thirty micrograms of protein 
with sodium dodecyl sulfate sample buffer. We transferred samples to a nitro-
cellulose membrane and incubated in solutions containing antibodies specific 
for histone or acetylated histone (1 in 1,000; Histone H3 (cat. 9715), histone 
H4 (cat. 2592), acetyl-histone H3 (Lys9/Lys14) (cat. 9677), acetyl-histone H4 
(Lys12) (cat. 2591), Cell Signaling Technology) and β-actin (1 in 1,000; β-actin 
(ACTBD11B7), cat. sc-81178, Santa Cruz Biotechnology). We performed global 
histone H3 acetylation assays according to the directions of the EpiQuik Global 
Histone H3 Acetylation Assay Kit (Epigentek Group). We performed western 
blotting as previously described21.

ChIP assays. We modified ChIP assays from the protocol of the EpiQuik Tissue 
Acetyl-Histone H3 ChIP Kit (Epigentek Group Inc). NRM tissues were col-
lected, crosslinked and frozen. After tissue homogenization and centrifugation, 
we sheared the extracted chromatin by sonication into 200–500 bp fragments. 
After dilution, we transferred chromatin samples and ‘input’ DNA to each well 
for protein and DNA immunoprecipitation. We added DNA release buffer con-
taining proteinase K, followed by the addition of reverse buffer to dissociate the 
DNA and histones. After reversing DNA crosslinks, we used binding buffer for 
DNA precipitation and purification. We used elution buffer to elute purified 
DNA from the columns. We used antibodies to acetyl histone H3 targeting 
Lys9 and Lys14, acetyl histone H4 targeting Lys12 (Cell Signaling Technology), 
HDAC1, HDAC2, HDAC4 and HDAC5 (HDAC1 (cat. 2062), HDAC2 (cat. 
2540), HDAC4 (cat. 2072), HDAC5 (cat. 2082), Cell Signaling Technology).

Quantification of DNA. We performed quantitative real-time PCR 
(Applied Biosystems) as previously described50. On the basis of the consen-
sus sequence of cAMP-response element (CRE) for potential binding sites of 
the transcription factor CREB in the Gad2 and Gad1 promoter regions, we 
designed primers to amplify representative promoter regions encompass-
ing the CRE sequence from immediately upstream to >2 kb upstream of the 
TSS. We calculated fold differences by the ∆Ct method. We used the follow-
ing primers (Invitrogen): Gad2, 5′-GCCCTGACTCGAACACTCAC-3′  
and 5′-ACACAGGGACAGGAAACGTG-3′ (−150 to −83 bp); 5′-CTTCCTCC 
CTCTTTGGTTCCTT-3′ and 5′-ACCAGGGAGACCTTGACAATCT-3′ (−285 to  
−153 bp); 5′-ATAAGCAGCAGCCAAGGTCAC-3′ and 5′-CGCTGGAGT 
CTATCACTGAGGA-3′ (−646 to −484 bp); and 5′-TCTGCTGCCTCCTTTG 

TGAA-3′ and 5′-CTCCCCACTTCGGATACAGG-3′ (−2,529 to −2,330 bp).  
Gad1, 5′-TTGCGCCTCTAGACTTGAGAGT-3′ and 5′-TCTCGGAGACAG 
AAGGGAAAC-3′ (−212 to −66 bp); 5′-TGATCTTTTCCCTGCTGTCA-3′  
and 5′-TCCCATGAGTAATCCAGAACG-3′ (−374 to −273 bp); and 5′-AAGAG 
ACAGGCCTGGGATAAAC-3′ and 5′-GGTCTGTCTGAGTGATGGGAAG-3′ 
(−2,841 to −2,704 bp). cgd3_140 (β-tubulin) 5′-TAGAACCTTCCTGCGGTC 
GT-3′ and 5′-TTTTCTTCTGGGCTGGTCTC-3′ were used as controls.

Quantitative RT-PCR. We extracted RNA with the RNAqueous-4PCR 
Kit (Applied Biosystems), and performed reverse transcription with the 
RETROscript Kit (Applied Biosystems). We quantified complementary 
DNA by real-time PCR50. We used the following primers (Invitrogen): 
Gad2, 5′-GCCCAGGCTCATCGCATTCACGTC-3′ and 5′-CCTCCACCCC 
AAGCAGCATCCACA-3′; Gad1, 5′-GGTTTCTTGCAAAGGACCAA-3′  
and 5′-CACCAGGGTCACTGTTTTCA-3′; and Gapdh, 5′-AACGACCCCTTCA 
TTGAC-3′ and 5′-TCCACGACATACTCAGCAC-3′.

Recordings. We performed visualized whole-cell recordings of NRM neurons in slice 
preparations as previously described21. We used neonatal rats in recording experi-
ments because of limited cell visibility and quality in the NRM slices from older rats. 
Both similarities and differences have to be recognized between neonates and adults  
in the inflammatory responses of NRM neurons for data interpretation20.

Immunohistochemistry. We conducted immunohistochemistry as previously 
described50. We used antibodies to synapsin I (1 in 200; (cat. 106001), Synaptic 
Systems) and GAD65 (1 in 1,000; (cat. AB5082), Millipore) and Cy3-conjuaged 
secondary antibodies (1 in 1,000; Jackson ImmunoResearch Laboratories). We 
obtained immunohistochemical staining for GAD65 and synapsin I and their 
overlap (n = 5 or 6 rats for each experimental group) from randomly selected 
sections (n = 4–6 sections from each rat) and quantitatively compared manually, 
with the experimenter blind to the treatment groups.

Microinjection. We performed NRM infusions and behavioral pain tests 
as previously described21,51. We infused TsA (16.5 mM in 1 µl) or SAHA  
(100 µM in 1 µl) into the NRM once daily for 4 d, as in the systemic treatment. 
As a standard control, TsA infusions into a site 1 mm dorsal to the NRM were 
without effect (data not shown).

Statistical analyses and materials. We used analysis of variance (one way and 
two way) and post hoc analyses to analyze data groups with multiple comparisons. 
We made simple statistical comparisons using Student’s t tests. We purchased 
drugs from Sigma or Tocris Cookson, except SAHA, which was purchased from 
Cayman Chemical.

Additional methods. Detailed methodology is described in the Supplementary 
Methods.

49. Roozendaal, B. et al. Membrane-associated glucocorticoid activity is necessary for 
modulation of long-term memory via chromatin modification. J. Neurosci. 30, 
5037–5046 (2010).

50. Ma, J., Zhang, Y., Kalyuzhny, A.E. & Pan, Z.Z. Emergence of functional delta-opioid 
receptors induced by long-term treatment with morphine. Mol. Pharmacol. 69, 
1137–1145 (2006).

51. Ma, J. & Pan, Z.Z. Contribution of brainstem GABA(A) synaptic transmission to 
morphine analgesic tolerance. Pain 122, 163–173 (2006).
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