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Abstract

Different neuroplastic processes can occur along the nociceptive

pathways and may be important in the transition from acute to chronic

pain and for diagnosis and development of optimal management

strategies. The neuroplastic processes may result in gain (sensitisation)

or loss (desensitisation) of function in relation to the incoming

nociceptive signals. Such processes play important roles in chronic pain,

and although the clinical manifestations differ across condition

processes, they share some common mechanistic features. The

fundamental understanding and quantitative assessment of particularly

some of the central sensitisation mechanisms can be translated from

preclinical studies into the clinic. The clinical perspectives are

implementation of such novel information into diagnostics, mechanistic

phenotyping, prevention, personalised treatment, and drug

development. The aims of this paper are to introduce and discuss (1)

some common fundamental central pain mechanisms, (2) how they

may translate into the clinical signs and symptoms across different

chronic pain conditions, (3) how to evaluate gain and loss of function

using quantitative pain assessment tools, and (4) the implications for

optimising prevention and management of pain. The chronic pain

conditions selected for the paper are neuropathic pain in general,

musculoskeletal pain (chronic low back pain and osteoarthritic pain in

particular), and visceral pain (irritable bowel syndrome in particular).

The translational mechanisms addressed are local and widespread

sensitisation, central summation, and descending pain modulation.

Significance: Central sensitisation is an important manifestation

involved in many different chronic pain conditions. Central sensitisation

can be different to assess and evaluate as the manifestations vary from

pain condition to pain condition. Understanding central sensitisation

may promote better profiling and diagnosis of pain patients and

development of new regimes for mechanism based therapy. Some of the

mechanisms underlying central sensitisation can be translated from
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animals to humans providing new options in development of therapies

and profiling drugs under development.

For this article, a commentary is available at the Wiley Online Library

1. Introduction

The prevalence of moderate to severe, chronic non-

malignant pain has been estimated at approximately

19% (Reid et al., 2011; Kennedy et al., 2014). Due to

demographic and lifestyle changes the prevalence of

chronic pain is expected to further increase in the

future.

It is evident that chronic pain represents a sub-

stantial worldwide socio-economical problem (Brei-

vik et al., 2006; Tsang et al., 2008; Johannes et al.,

2010; Reid et al., 2011), and the lost productivity

contributes to a high economic burden (Gaskin and

Richard, 2012; Leadley et al., 2012). Indeed, pain

disorders are amongst the most prevalent, costly, dis-

abling and commonly researched conditions in the

workplace (Schultz et al., 2007).

For the individual patient, chronic pain is associ-

ated with a negative impact on the overall quality of

life, including physical and emotional well-being,

sleep quality, and functional status (Menefee et al.,

2000; Breivik et al., 2006; Fine, 2011), leading to

massive psychosocial implications (Vartiainen et al.,

2016) and increased incidence of depression (Munce

and Stewart, 2007). It is estimated that a 60-year old

woman with osteoarthritis (OA) has lived 30% of

her life with impaired function and pain (Vos et al.,

2012). Furthermore, severe chronic pain can shorten

the life expectancy (Torrance et al., 2010).

As there is often a disparity between the chronic

pain intensity and the severity of the tissue damage

(e.g. extent of nerve trauma, degree of joint damage,

size of gastric ulcer, extent of endometriosis), health

care professionals tend to underestimate the pain

intensity as compared to what is actually reported by

the patients (Puntillo et al., 2003). One reason for

this disparity and the un-proportionally high pain

experience is most likely various sensitisation pro-

cesses and in particular the facilitated central gain

(i.e. amplification of central excitatory signalling).

The continuous flow of new fundamental knowl-

edge about central nociceptive processes has to some

degree been translated into the clinic and has

enhanced the understanding of the various signs and

symptoms across pain conditions. At the same time, it

has also generated some misconceptions. As sensitisa-

tion phenomena are readily recognised across neuro-

pathic pain conditions, the central sensitisation

features have often been interchanged with the neuro-

pathic pain terminology and caused some confusion.

The aims of this paper are to introduce and discuss

(1) some common fundamental central pain mecha-

nisms, (2) how they may translate into the clinical

signs and symptoms (neuropathic pain vs. central sen-

sitisation) across different chronic pain conditions, (3)

how to evaluate gain and loss of function using quan-

titative pain assessment tools, and (4) the implications

for optimising prevention and management of pain.

The chronic pain conditions selected for the paper

are neuropathic pain in general, musculoskeletal pain

(chronic low back pain and osteoarthritic pain in

particular), and visceral pain (irritable bowed syn-

drome in particular). The translational mechanisms

addressed are local and widespread sensitisation, cen-

tral summation, and descending pain modulation.

2. Defining and assessing sensitisation

According to the International Association for the

Study of Pain (IASP the definition of central sensiti-

sation is, ‘Increased responsiveness of nociceptive

neurons in the central nervous system to their nor-

mal or subthreshold afferent input’ (taxonomy is

available from http://www.iasp-pain.org/Taxono

my#Sensitisation).

As direct electrophysiological recordings from cen-

tral neurons are not an option in humans, the term

‘central sensitisation’ should therefore be used cau-

tiously in humans.
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In addition, the term may for many purposes be a

too broad term from a mechanistic point of view as

‘central’ may refer to (1) ipsilateral sensitisation asso-

ciated with the local nociceptive focus, (2) segmental

sensitisation contralateral to the local nociceptive

focus, (3) extraterritorial spreading sensitisation

around local nociceptive focus, or (4) generalised

widespread sensitisation. A recent review has in

details discussed the various mechanisms underlying

spreading of sensitisation and the associated terminol-

ogy (Arendt-Nielsen et al., 2014b), and when possible

the specific terms defined above will in the present

paper. The terminology ‘central sensitisation’ (CS)

will be used and will encounter both segmental and

extrasegmental spreading sensitisation.

Clinically a variety of diagnostic surrogate markers,

besides clinical history (e.g. intensity, character/modal-

ity, spatial and temporal characteristics, spontaneous/

provoked, and possible exacerbating factors of the pain),

are being used for assessment including questionnaires

(e.g. neuropathic pain scales and pain features), simple

bedside sensory testing (hypo- or hyper-phenomena,

wind-up like pain and after-sensation), and mapping of

areas with sensory abnormalities.

In more research-based environments experimental

mechanistic sensitisation proxies have been developed

to estimate the nociceptive excitability of the nervous

system. By combining different quantitative assess-

ment tools, it is possible to get an estimate of how the

peripheral and central nervous system are functioning

(gain or loss of functions). Quantitative sensory test-

ing (QST) is a way to evaluate the excitability of differ-

ent pain pathways/mechanisms and involves a variety

of stimulus modalities (thermal, mechanical, chemi-

cal, electrical), assessment methods (psychophysics

(thresholds, ratings), electrophysiology, imaging), and

structures (skin, muscles, joint, and viscera).

QST can provide an understanding of aspects

related to pain transduction, transmission, and

perception under normal and pathophysiological

conditions and hopefully in the future provide

mechanism-based diagnosis, prevention, and man-

agement of pain (Jensen and Baron, 2003). Different

QST protocols have been suggested for profiling

patients, and the QST battery developed by the Ger-

man Research Network on Neuropathic Pain (DFNS)

is the one applied in most studies with focus on neu-

ropathic pain condition (Magerl et al., 2010; Maier

et al., 2010; Geber et al., 2011). In QST studies, the

focus and mind-set are often directed towards hyper-

excitable responses, but as pointed out by DFNS, it is

important to focus both on ‘gain-of-function’ and on

‘loss-of-function’ as hypoalgesia can also be a

prominent sign in neuropathic pain (Jensen and

Baron, 2003; Haanpaa et al., 2011).

The DFNS protocol assesses the function of small

(thermal thresholds) and large (tactile and vibration

thresholds) nerve fibre pathways and increased/de-

creased pain sensitivity (hyperalgesia, allodynia,

hyperpathia, wind-up like pain). Hence, the battery

consists predominantly of cutaneous stimulus modal-

ities and is therefore less adequate for profiling mus-

culoskeletal or visceral pain conditions.

The currently suggested test platforms for assessing

neuropathic pain (e.g. Maier et al., 2010), muscu-

loskeletal pain (Arendt-Nielsen et al., 2015a), and

visceral pain (Brock et al., 2009) all have their dif-

ferent limitations: Most likely a common sensory test

platform cannot be developed as the manifestations

to be assessed vary between the different types of

conditions. However, this review will emphasise that

some dynamic sensory tests may act as general prox-

ies for CS (e.g. central temporal summation and

descending pain modulation) across conditions.

Besides, standard clinical and sensory testing, neu-

roimaging (e.g. Alomar and Bakhaidar, 2016; Mor-

ton et al., 2016) and electrophysiological (Lelic

et al., 2014; Pinheiro et al., 2016) assessments have

been suggested as tools for evaluating sensitisation

processes, but these options are not further discussed

in the present paper.

3. Neuropathic pain versus central
sensitisation

In the literature, there is a general trend to inter-

change neuropathic pain symptoms and CS. How-

ever, neuropathic pain is defined as pain caused by a

lesion or disease of the somatosensory nervous sys-

tem (Jensen et al., 2011).

It can be debated which somatic painful disorders

besides neuropathy could qualify for this definition;

e.g. what is the evidence that osteoarthritis includes

neuropathic lesions, what is the evidence that idio-

pathic chronic low back pain (LBP) without radicu-

lopathy includes damage of the nervous system, and

what is the evidence that, e.g. irritable bowel disor-

ders and fibromyalgia involve nervous system dam-

age or disease?

In the present paper, we use the terminologies (1)

neuropathic pain for disorders with validated nerve

damage and (2) CS when it can be assessed by speci-

fic experimental proxies (e.g. widespread hyperalge-

sia, temporal summation, descending inhibition) and

can be applied across different chronic pain condi-

tions.
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It has recently been argued that the many ‘func-

tional’, ‘dysfunctional’, and ‘idiopathic’ types of

chronic pain conditions (e.g. fibromyalgia, complex

regional pain syndrome type 1, ‘nonspecific’ chronic

low-back pain, whiplash, irritable bowel syndrome,

painful bladder syndrome) should be integrated into a

new chronic pain ICD11 classification (Treede et al.,

2015), and the term for such a common descriptor is

currently being discussed (Kosek et al., 2016).

4. Assessing sensitisation: peripheral
versus central

One aspect to address is the challenge of separating

peripheral versus central manifestations of sensitisa-

tion.

If a given non-painful or painful stimulus is

applied to a patient, it can be difficult to determine if

the assessed reaction is a result of localised sensitisa-

tion/desensitisation or caused by a generalised

increase/decrease in sensitivity. Recently, topograph-

ical pain sensitivity mapping techniques based on

many consecutive assessments in a restricted area

have been developed to assess pain thresholds over

an area, e.g. a nerve innervation territory (de la

Llave-Rincon et al., 2009), oral cavity (Lu et al.,

2013), joint structure (Arendt-Nielsen et al., 2015a),

muscle/tendon structures (Fernandez-de-Las-Penas

et al., 2009; Fernandez-Carnero et al., 2010), or vis-

ceral location (Drewes et al., 1997) and specific areas

of sensory abnormalities can be determined. The

topographical mapping technique provides an oppor-

tunity to determine local spots with specifically

changed pain sensitivity (e.g. tender spots, tendon-

muscle interaction) which obviously in addition to

the local changes will be affected by a general

increase in central gain.

Assessing the sensory abnormalities from specific

structures require different stimulators/activators.

Cutaneous stimulation with pin-prick or heat is easy,

whereas activating deeper structures such as mus-

cles, tendons, bones, joints, or viscera is more chal-

lenging. In recent years, new developments have

predominantly focused on these latter structures due

to their clinical relevance and the increased focus on

sensitisation associated with these structures (for

reviews see Arendt-Nielsen and Yarnitsky, 2009;

Drewes et al., 2003).

To estimate the contribution of peripheral sensiti-

sation a minimum of two locations from two differ-

ent segmental levels should be assessed and

compared with a pain-free population (normative

database). If generalised sensitisation is present in a

given patient, all thresholds or pain ratings (assessed

locally and distantly to injury) will be affected, and

hence the comparison with pain free volunteers will

provide information of the relative peripheral and

central contribution If CS is restricted to the segmen-

tal level of the nociceptive focus, the extrasegmental

site may not differ from controls (Fig. 1).

4.1 Clinical assessment of central sensitisation

Clinical and experimental characteristics of CS are

observed across many different chronic pain condi-

tions (Julien et al., 2005; Campbell and Meyer,

2006; Drewes et al., 2006; Veves et al., 2008; Woolf,

2011; Nijs et al., 2014; Fingleton et al., 2015).

It has been claimed that CS is most pronounced in

pain conditions with a neuropathic component

(Freynhagen and Baron, 2009; Woolf, 2011). How-

ever, this is difficult to validate since there is no

applicable definition, method, or guideline for diag-

nosing CS.

Pain Sensitivity Questionnaire (PSQ) and the Cen-

tral Sensitivity Index (CSI), have been developed

(Ruscheweyh et al., 2009; Mayer et al., 2012; Nijs

et al., 2014) to assess various aspects of the clinical

pain perceived. Significant correlations have been

observed between PSQ scores and pain intensity
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Figure 1 A schematic illustration of how the different sensitisation

processes may contribute to the assessed pain reaction (pain thresh-

old). The assessments of thresholds from two locations in a normal

healty volunteers are assigned 100%. In a pain patient with only loca-

lised, peripheral sensitisation the threshold from the affected region

(local site) is reduced. The assessment from a distant, normal site is

similar to a healthy control. In a patient with peripheral as well as seg-

mental sensitisation the threshold is further reduced whereas the

extrasegmental site may be normal. In case of generalised sensitisa-

tion the local threshold is further reduced at the local site but also

reduced at the distant, extrasegmental site. Statistical compararison

with a healthy, normal, pain free population is the only way to evalu-

ate the degree of localised and spreading sensitisation in a given

patient or patient population.
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ratings (Ruscheweyh et al., 2009; Sellers et al.,

2013) but possible associations to CS as assessed by

experimental measures have not yet been estab-

lished.

The painDETECT questionnaire has been devel-

oped as a neuropathic screening tool for assessing

neuropathic components in chronic musculoskeletal

pain, such as chronic LBP (Freynhagen et al., 2006)

and OA (Hochman et al., 2013), but it is not specifi-

cally useful for neuropathic pain conditions with sen-

sory loss (Vollert et al., 2016). More recently another

mechanism-based classification questionnaire has

been developed for LBP to identify symptoms and

signs associated with a clinical classification of CS in

patients with low back (� leg) pain (Smart et al.,

2012). Clinical mapping of pain areas, referred pain

areas, or areas with sensory hypo-/hypersensitivity is

useful for understanding if a given condition is

restricted to a neuronal territory or spreading across

territories/segments. Furthermore, the development

of such areas can be followed quantitatively over

time and normally expansions are indicative of

increased central involvement. Area expansions and

perceptual changes into a more diffuse character of

the pain are observed in patients developing addi-

tional painful comorbidities (Thompson et al., 2010).

The areas can be digitally scanned and the area calcu-

lated.

4.2 Experimental assessment of central
sensitisation

There is ample preclinical (Tal and Bennett, 1994;

Malan et al., 2000), human experimental (Shenker

et al., 2008), and clinical (Konopka et al., 2012) evi-

dence that for neuropathic-like conditions the signs

and symptoms (sensory abnormalities) can extend

into regions beyond those directly innervated by the

injured nerve. This emphasises that there may be no

non-affected control site in a chronic pain patient.

In the following specific quantitative experimental

tools for assessing CS will be discussed.

4.2.1 Widespread sensitisation

Many clinical QST studies have shown this wide-

spread sensitisation not only in case of neuronal

injuries, but also found in conditions like migraine

and chronic tension type headache (Fernandez-de-

Las-Penas et al., 2010).

Similarly, contralateral and extrasegmental wide-

spread pressure pain hyperalgesia are found in, e.g.

patients with painful knee OA (Arendt-Nielsen et al.,

2015a), unilateral epicondylitis (Fernandez-Carnero

et al., 2009), and chronic visceral pain conditions

(Giamberardino, 2003; Bouwense et al., 2013).

The only way to overcome the problem with lack

of control points in pain patients widespread hyper-

algesia is to use normative databases from sex and

age matched controls (Neziri et al., 2011). A given

assessment from a patient can then be compared

with controls in the database using Z-scores to judge

if an individual patient has a sensory abnormality

(Rolke et al., 2006; Pfau et al., 2014).

4.2.2 Wind-up like pain (temporal summation) and

after-discharge

The wind-up process measured from dorsal horn

wide-dynamic range neurons in animals is a progres-

sive increase in neuronal output during the course

of a train of identical afferent nociceptive stimuli

(homosynaptic potentiation). This repeated high

intensity afferent barrage will cause the increased

neuronal output to last after the end of the repeated

stimuli and CS has been generated. In humans, psy-

chological or electrophysiological (facilitated reflexes)

responses are used as proxies for the initial part of

the wind-up process. This phase translates into the

so-called temporal summation. If a painful stimulus

is repeated 1–3 times per second for 5 to 10 s, the

pain will integrate and become more painful at the

end of the stimulus train (Arendt-Nielsen et al.,

1994). Facilitation of temporal summation is consid-

ered a measure of increased central gain of pain, and

temporal summation is a very powerful mechanism

difficult to block with conventional analgesics or

anaesthetic procedures (Petersen-Felix et al., 1996).

Temporal summation can be elicited using electri-

cal, mechanical or thermal stimulation modalities

and can be elicited from the skin, musculoskeletal

structures, and viscera (Arendt-Nielsen, 1997;

Arendt-Nielsen and Yarnitsky, 2009).

In clinical bedside testing, simple devices are used

for assessing temporal cutaneous summation such as

tapping the skin with a nylon filament (Nikolajsen

et al., 1996). However, when more standardisation is

required, automated user-independent methods are

needed such as thermal (Kong et al., 2013), pressure

(Nie et al., 2009), or electrical stimulation tech-

niques of the skin (Arendt-Nielsen et al., 1994),

muscles (Arendt-Nielsen et al., 1997b; Skou et al.,

2013), and viscera (Drewes et al., 1999).

In many chronic pain conditions, such as neuro-

pathic (Nikolajsen et al., 1996; Maier et al., 2010),

musculoskeletal (Staud et al., 2014; Tesarz et al.,
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2016), joint (Arendt-Nielsen, 2017), and visceral

pain (Arendt-Nielsen, 1997; Dimcevski et al., 2007;

Sherman et al., 2015), the temporal summation is

significantly facilitated.

Sometimes pain patients experience painful after-

sensations when the train of repeated stimuli has

stopped (Robinson et al., 2010), and the duration of

this phenomenon is prolonged in tension-type head-

ache/temporomandibular pain patients as compared

with controls (Sato et al., 2012). This has also been

observed in patients with neuropathic (Gottrup

et al., 2003) or musculoskeletal chronic pain (Staud

et al., 2003, 2007).

4.2.3 Spatial summation

Nociceptive stimuli do not only integrate temporally,

but also spatially (Quevedo and Coghill, 2007). Spa-

tial summation is an increase in pain intensity when

the size of the stimulated area is expanded, e.g. if

the number of stimulation probes delivering a pain-

ful heat stimulus is increased from 1 to 5 (Nielsen

and Arendt-Nielsen, 1998). Spatial integration relies

on central networks and the general sensitisation

status (Bouhassira et al., 1995).

In humans, spatial summation can be assessed in

different ways applying the stimulus to different area

sizes by, e.g. thermodes (Price et al., 1989; Coghill

et al., 1993; Nielsen and Arendt-Nielsen, 1997),

pressure probes (Greenspan et al., 1997; Nie et al.,

2009), or cuffs (Polianskis et al., 2002).

Spatial summation is facilitated in various pain

conditions, such as fibromyalgia (Staud et al., 2004,

2007), OA (Graven-Nielsen et al., 2012), and lateral

epicondylitis (Jespersen et al., 2013). Facilitation of

spatial summation is likewise considered as a mea-

sure of increased central gain of pain.

4.2.4 Descending pain modulation (conditioning

pain modulation)

Descending pain inhibition is largely mediated by

noradrenaline release in the spinal cord where one

mechanism is noradrenaline modulation acting at

the a2-adrenoceptors and hence inhibiting the

release of excitatory neurotransmitters (D’Mello and

Dickenson, 2008). One aspect of the descending pain

control is associated with diffuse noxious inhibitory

control (DNIC), expressed as an inhibition of dorsal

horn neurons along the neuroaxis as produced by a

noxious stimulus applied to a body region remote

from the receptive field of the neurons (Le Bars

et al., 1979; Lee et al., 2011c). The endogenous

descending pain control network is important for the

chronification of pain (Miranda et al., 2015).

Preclinical data indicate that not only nociceptive

inhibition but also descending facilitation are impor-

tant for maintaining neuropathic (Wang et al., 2013;

Ossipov et al., 2014) and inflammatory hyperex-

citable stages (Ambriz-Tututi et al., 2011; Bannister

and Dickenson, 2016). Tools to separate the two

mechanisms in patients would be an important

achievement.

It is generally accepted that impaired descending

pain modulatory pathways and particularly the facil-

itatory pathways may contribute to development

and maintenance of CS (Wang et al., 2013; Ossipov

et al., 2014; Bannister and Dickenson, 2016) and

therefore most likely are also important for clinical

pain conditions (Voscopoulos and Lema, 2010).

Descending pain control is known to be mediated by

the descending inhibitory noradrenergic pathway

and is accompanied by e.g. a gain in the descending

5HT3 receptor mediated facilitations (Bannister and

Dickenson, 2016).

In humans, the assessment of the descending path-

ways is named conditioning pain modulation (CPM)

(Yarnitsky et al., 2010). The literature on CPM in

chronic pain has recently been reviewed (Lewis et al.,

2012; Staud, 2012; Goubert et al., 2015).

The CPM assessment paradigm in humans can

quantify the balance and hence the net sum

between the inhibition and facilitation. When pain

patients have impaired CPM, it is not obvious if the

inhibition is reduced or the facilitation is increased,

but it has been shown in chronic pain patients that

the degree of widespread hyperalgesia and reduced

CPM are associated (Schliessbach et al., 2013).

The CPM procedure generally shows a large vari-

ability in healthy volunteers as well as in patients,

and it has recently been suggested that patients may

be classified as CPM reducers (pain inhibition) or

CPM increasers (pain facilitation). This may provide

new insights on how to separate the two descending

pathways (Potvin and Marchand, 2016).

A cohort study including 2199 healthy volunteers

showed the natural Gaussian distribution of CPM

responses, and it is speculated that those in the

lower quartile could be more vulnerable to develop

chronic pain than those in the upper quartile with a

more protective CPM system (Skovbjerg et al.,

2016).

Impaired CPM has been reported in many clinical

conditions, such as e.g. myofascial temporomandibu-

lar joint pain (Bragdon et al., 2002), chronic LBP

(Peters et al., 1992; Mlekusch et al., 2016), whiplash
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(Daenen et al., 2013, 2014; De Kooning et al., 2015),

long-standing patellofemoral pain (Rathleff et al.,

2016), myofascial pain (Hilgenberg-Sydney et al.,

2016), fibromyalgia (Kosek and Hansson, 1997; Staud,

2009), painful knee OA (Arendt-Nielsen et al., 2010),

chronic LBP (Correa et al., 2015), frequent episodic

tension-type headache (Drummond and Knudsen,

2011), chronic tension-type headaches (Sandrini

et al., 2006), chronic daily headache (Hilgenberg-Syd-

ney et al., 2016), endotoxemia (Karshikoff et al.,

2015), interstitial cystitis (Ness et al., 2014), irritable

bowel syndrome (Wilder-Smith and Robert-Yap,

2007; Williams et al., 2013), and chronic pancreatitis

(Olesen et al., 2010).

In the area of neuropathic pain, several condi-

tions have shown deficient CPM such as painful

peripheral neuropathy (Niesters et al., 2013), com-

plex-regional pain syndrome (Seifert et al., 2009),

and painful diabetic neuropathy (Niesters et al.,

2014).

Several chronic pain studies have shown that

mainly females have deficient CPM (Karshikoff

et al., 2015; Hilgenberg-Sydney et al., 2016), and

hence the CPM is most reliably (test–retest) assessed

in chronic pain male patients (Martel et al., 2013).

In addition, race seems to affect the CPM effect

(Morris et al., 2015).

The CPM deficit has been shown to correlate with

the severity in patients with spinal cord injury neu-

ropathic pain (Albu et al., 2015) where the CPM

deficit correlates positively with the number of pain-

ful body regions (Gruener et al., 2016), painful

chemotherapy-induced polyneuropathy (Nahman-

Averbuch et al., 2011), complex-regional pain syn-

drome (Seifert et al., 2009), postherpetic neuralgia

(Pickering et al., 2014), and traumatic peripheral

nerve injury (Bouhassira et al., 2003).

Furthermore, it is important to note that the CPM

efficacy declines with age (Riley et al., 2010; Gras-

horn et al., 2013) and is influenced by gender (Mar-

tel et al., 2013). In case that the control material

consists of younger subjects, this may bias many

chronic pain studies as the populations are normally

middle-aged or elderly.

As such it seems that other supra-spinal or even

spinal mechanisms than nociceptive may influence

the CPM efficacy conditions like depressive disorders

or psychosocial factors (Nahman-Averbuch et al.,

2016) and hence it cannot be ruled out that some

‘CPM’ studies actually investigate pure cerebral pro-

cesses.

This may explain why psychiatric and psychologi-

cal disorders may show signs of sensitisation without

any obvious peripheral drivers. This is an important

area to further explore as attenuated central pain

control mechanisms (most likely descending facilita-

tory pathways) are involved (Arendt-Nielsen et al.,

2012b).

Two possible explanations can be suggested for

this restoring CPM.

(1) Removing the peripheral drive

(2) Pharmacologically target neurotransmitters/-

receptors boosting descending inhibition or

reducing descending facilitation

During surgery, e.g. joint replacement, the periph-

eral nociceptive drive can be removed, and if the

patient becomes pain-free, the CPM is normalised

(Graven-Nielsen et al., 2012).

In chronic pain patients in whom the peripheral

drive cannot be removed or inhibited a pharmaco-

logical intervention may be an option to normalise

CPM (Arendt-Nielsen and Yarnitsky, 2009).

The importance of the status of the monoaminer-

gic system for the CPM efficacy has been suggested

and associations have been found between plasma-

bound norepinephrine and metanephrine concentra-

tions and the efficacy of CPM, but this effect was not

observed for cerebrospinal fluid (Parent et al., 2015).

Similarly, in a non-placebo controlled study the

effect of duloxetine (serotonin-norepinephrine reup-

take inhibitor) was found to be highest in those

painful diabetic neuropathic patients with the most

impaired CPM (Yarnitsky et al., 2012). Furthermore,

drugs with effect on the opioid and noradrenergic

system, such as tapentadol, seem to facilitate CPM

(Niesters et al., 2014). The dopaminergic system has

also been suggested to play a role for the potency of

CPM (Treister et al., 2013) and polymorphisms in

serotonin and dopamine-related gene regulation are

found to affect endogenous pain modulation (Treis-

ter et al., 2011).

5. Clinical evidence for central
sensitisation: examples of neuropathic,
musculoskeletal, joint, and visceral pain
conditions

Clinical characteristics indicative of CS are observed

in many chronic pain conditions (Julien et al., 2005;

Campbell and Meyer, 2006; Drewes et al., 2006;

Veves et al., 2008; Woolf, 2011; Fingleton et al.,

2015; Arendt-Nielsen, 2017), but no definitive

method of diagnosing CS is currently available (Nijs

et al., 2014). Thus, CS cannot be excluded as a con-

tributing factor to any type of chronic pain, and

specific estimates of the prevalence of CS in chronic
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pain patients are generally lacking. Nevertheless, the

prevalence of CS has been estimated based on the

presence of certain clinical characteristics, including

symptoms typical of neuropathic pain. In a 2014 sys-

tematic review by Lluch and colleagues, 28 to 34%

of patients with OA knee pain were estimated to

have CS, but this was based on the reported pres-

ence of neuropathic pain symptoms which is not a

definition of CS (Lluch et al., 2014).

One important limitation is that there are no lon-

gitudinal studies following the development of CS

over time but only cross-sectional studies on patients

with different duration and intensity of their chronic

pain. Although we know that sensitisation can be

induced very quickly in the laboratory after, e.g.

intradermal capsaicin injection (Iannetti et al., 2013)

and resolved very quickly in the clinic when block-

ing the peripheral drive maintaining CS (Gracely

et al., 1992), it could be assumed that it may also

develop quickly in a clinical context if a sufficient

peripheral nociceptive barrage is initiated momentar-

ily (except in an acute post-operative setting). How-

ever, in many clinical conditions the pain develops

slowly over time and consequently it takes a while

before the nociceptive drive reaches a sufficient level

to initiate and maintain the sensitisation.

The following sections will provide a brief preclini-

cal introduction highlighting the most fundamental

findings relevant for CS in relation to the chronic

pain conditions addressed (neuropathic, muscu-

loskeletal (chronic LBP), joint specific (osteoarthri-

tis), and visceral (irritable bowel syndrome)). This

will be followed by presenting the individual mani-

festations of signs and symptoms, a discussion in the

context of CS, and its assessment focusing on the

introduced tools.

5.1 Neuropathic pain

A main problem in developing new drugs for treat-

ing neuropathic pain is the lack of translation from

animal data into clinic (Percie du Sert and Rice,

2014). Preclinical ‘models of neuropathic pain’

should be developed to reflect more closely the

pathophysiological conditions found in humans.

From preclinical data it is evident that CS can

occur at segmental and extra-segmental levels with

exaggerated pain response, spreading hyperalgesia,

and allodynia (Baron, 2006).

However, a main problem is that many animal

models of neuropathic pain often focus on one nerve

(sciatica) and assess hyperalgesia/allodynia but do

not address the spontaneous nociceptive behaviour

as spontaneous pain is the main problem for the

patients. There is firm evidence that CS is present in

animal models of nerve damage.

5.1.1 Localised and widespread hyperalgesia

The response to intradermal capsaicin has been

investigated in the painful and non-painful legs of

patients with unilateral sciatica and compared with

healthy controls. Pain and hyperalgesia responses

were enhanced in both legs of patients with unilat-

eral sciatica compared with healthy controls support-

ing the notion that patients with pre-existing

neuropathic pain have fundamental differences in

the central nervous system processing compared

with pain-free controls (Aykanat et al., 2012). There

is ample clinical evidence that in neuropathic condi-

tions the signs and symptoms extend into regions

beyond those directly innervated by the injured

nerve (Malan et al., 2000; Konopka et al., 2012).

Contrary to many of the above findings for pos-

therpetic neuralgia (PHN) the pain remains localised

with no contralateral effects on neurogenic inflam-

mation (Baron and Saguer, 1994) or facilitated cap-

saicin provoked pain (Petersen et al., 2000)

suggesting PHN as a specific class of neuropathic

pain.

Use of the standardised QST protocol of the Ger-

man Research Network on Neuropathic Pain has

revealed abnormality for some sensory parameters at

the non-affected side that was as high as 57%; this

indicates that bilateral sensory dysfunction in

patients with unilateral neuropathic pain is more the

rule than the exception (Konopka et al., 2012) and

often very minimal sensory differences exist between

affected and non-affected areas (Geber et al., 2011).

Studies of thermal sensory function at the affected

and non-affected side of acute and chronic complex

regional pain syndrome patients have shown bilat-

eral sensory changes as well (Huge et al., 2008).

Likewise, bilateral thermal detection and pain

threshold sensitisation have been demonstrated in

patients with unilateral carpal tunnel syndrome

compared with controls (de la Llave-Rincon et al.,

2009), and in a similar patient population bilateral

pressure pain hyperalgesia was found (de la Llave-

Rincon et al., 2009).

5.1.2 Temporal summation

Temporal summation (wind-up like pain) is one of

the tests in the DFNS platform, and 33% of patients

with neuropathic pain are found to have facilitated

summation (Maier et al., 2010). The DFNS
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technique is based on a handheld filament, whereas

Nikolajsen et al. (1996) used an automated activator

which allowed precise adjustment of the stimulation

frequency (normally 2 Hz) (Nikolajsen et al., 1996).

Similarly, facilitated wind-up pain is found in pos-

therpetic neuralgia (Eide et al., 1994) and in patients

with chronic postsurgical neuropathic pain (Pud

et al., 1998).

Occasionally neuropathic pain patients will experi-

ence an aftersensation after, e.g. 1 min of repeated

2 Hz stimulations (Gottrup et al., 2003).

5.1.3 Descending pain control

Patients with neuropathic pain after a spinal cord

injury showed a dysfunction of CPM which corre-

lated positively with the number of painful body

regions (Gruener et al., 2016).

In recent years, a number of neuropathic pain

studies have been published showing impaired

descending pain control in painful neuropathies such

as postherpetic neuralgia (Pickering et al., 2014) and

traumatic peripheral nerve injury (Bouhassira et al.,

2003).

It has even been suggested that the CPM paradigm

could be useful for predicting treatment effects (Gra-

novsky, 2013), such as the effect of duloxetine in

painful diabetic neuropathy (Yarnitsky et al., 2012).

In patients with chronic radicular pain, the

impaired descending inhibitory pain modulation is

restored by hydromorphone (Suzan et al., 2015) and

in patients with diabetic polyneuropathy a 4-week

tapentadol treatment potentiated the descending

pain inhibition (Niesters et al., 2014).

Thus, there is firm clinical evidence that CS is pre-

sent in patients with neuropathic pain.

5.2 Low back pain

Preclinical back injury models have demonstrated

that CS can be evoked (Amaya et al., 2009; Xie

et al., 2012; Strong et al., 2013) and that the models

elicited radiating nociceptive reactions and an

increase in heat hyperalgesia in the hind paw which

was outside the affected segment (Amaya et al.,

2009).

The central alterations in the spinal cord using

such models have shown activation of glial cells and

release of cytokines comparable to those observed in

other neuropathic pain models (Strong et al., 2013).

In several human and animal studies, sensory

nerve fibres in degenerated discs were shown to

express painful neuropeptides and growth factors,

such as substance P (Ashton et al., 1994; Coppes

et al., 1997) and calcitonin gene-related peptide

(McCarthy et al., 1991; Roberts et al., 1995) as well

as nerve growth factors (Miyagi et al., 2011). There

is firm evidence that CS is present in animal models

of back injury models.

5.2.1 Localised and widespread hyperalgesia

A recent study concluded that most QST measure-

ments have acceptable reliability in patients with

chronic LBP including pressure pain thresholds nor-

mally used for assessing CS (Vuilleumier et al.,

2015). Furthermore, the pressure pain threshold

seems to be the most sensitive to assess CS in

chronic LBP (Neziri et al., 2012).

However, studies within the area of chronic LBP

have provided conflicting data on whether the

patients develop generalised hypo- or hyperalgesia.

Naliboff et al. (1981) and Cohen et al. (1983)

reported increased thresholds to radiant heat stimuli

compared with pain-free controls. On the other

hand, Peters et al. (1992) hypothesised higher elec-

trical pain thresholds, but found no statistically sig-

nificant group differences.

Most studies have found localised or generalised

hyperalgesia in chronic LBP.

Schmidt and Brands (1986) and Brands and Sch-

midt (1987) reported greater pain intensity and less

pain tolerance with the cold pressor test in chronic,

idiopathic LBP compared with controls. On the con-

trary, Blumenstiel et al. (2011) concluded that LBP

patients displayed significantly lower PPT in the

painful area of the back but not on the dorsum of

the hand suggesting only localised sensitisation.

Giesecke et al. (2004) compared chronic idiopathic

LBP patients with fibromyalgia patients and healthy

controls and found a general increase in pressure

pain sensitivity in both patient groups. Data from

Puta et al. (2012) supported the finding of gener-

alised hyperalgesia in chronic LBP.

Similar findings of generalised pressure hyperalge-

sia in chronic LBP has been found in other studies

(Giesbrecht and Battie, 2005; Imamura et al., 2013;

Correa et al., 2015).

O’Neill and colleagues demonstrated the presence

of generalised deep-tissue hyperalgesia in patients

with chronic LBP and intervertebral disc herniation

(O’Neill et al., 2007). The concept of facilitated cen-

tral gain in chronic LBP is also supported by an EEG

mapping study (Diers et al., 2007).

The nociceptive reflexes have been used to assess

the central consequences of chronic LBP and were
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shown to be reliable in these patients (Biurrun Man-

resa et al., 2011). A more advanced version of this

technique is to assess the reflex-receptive fields

(reflecting enlarged receptive fields of dorsal horn

neurons), and facilitation of those fields has been

demonstrated (Biurrun Manresa et al., 2013) to fur-

ther support CS.

It has been proposed that the CS could be an

important driver for the increased incidence of pain-

ful co-morbidity in chronic LBP as minimal nocicep-

tive input from a given structure (e.g. an

osteoarthritic joint) could generate pain (Hestbaek

et al., 2004; Andersen et al., 2012).

5.2.2 Temporal summation

The summation threshold has shown to be reliably

assessed between sessions in chronic LBP patients

providing the opportunity to use this parameter for

monitoring (Biurrun Manresa et al., 2011). When

different QST modalities have been used to discrimi-

nate chronic LPB patients from healthy controls, the

temporal summation showed good discriminability

(fitted area under the receiver operating characteris-

tic (ROC), 0.80) (Neziri et al., 2012) with a signifi-

cant association with clinical pain severity and

disability (Owens et al., 2016). Of note, the temporal

summation was elevated in chronic LBP patients

who had experienced emotional abuse during their

childhood (Tesarz et al., 2016).

Most studies have used psychophysical assess-

ments, but Biurrun Manresa et al. (2013) found

facilitated temporal summation in LPB when

assessed by the nociceptive withdrawal reflex.

The facilitated temporal summation in chronic

LBP indicates central involvement of e.g. the NMDA

receptor as supported by findings showing that mag-

nesium administration is efficient in dampening the

pain in a specific group of refractory chronic LBP

patients (Yousef and Al-deeb, 2013).

5.2.3 Descending pain control

It has been debated if the CPM paradigm can provide

information about the facilitatory as well as the inhi-

bitory pathways, and it has been shown that a sub-

group of chronic LBP patients showed reduced CPM

and another group facilitated CPM (Rabey et al.,

2015).

One of the first studies on impaired descending pain

modulation in chronic LBP was published in 1992

(Peters et al., 1992), and later other studies have fol-

lowed with the same result (Owens et al., 2016).

Evidence has been provided that endogenous modu-

lation is also impaired in acute LBP (Mlekusch et al.,

2016) raising the question for how long the LBP

should be present in order to have an impact on CPM.

Taken together, there is firm evidence that CS is

present in patients with chronic LBP.

5.3 Osteoarthritis (OA) pain

A number of reviews have focused on the role of CS

in preclinical joint pain models (Schaible, 2004).

However, in recent years, it has been debated inten-

sively how well the animal OA models translate into

patients. Many drug trials have failed as no effects

were found in patients although clear effects were

found in the preclinical models.

Among the different models, intra-articular injec-

tion of monosodium iodoacetate (MIA) induces

structural changes in the knee joint cartilage and

meniscus. These are accompanied by changes in the

expression of pain-mediating cytokines in the DRG

and spinal cord which correlate with the develop-

ment of hyperalgesia and allodynia (Im et al., 2010).

The same model causes reduced nociceptive thresh-

olds in the biceps femoris which neurophysiologi-

cally represents a spinal mechanism (Kelly et al.,

2013). The monoiodoacetate (MIA) model also

seems capable of activating spinal glial cells which

may contribute to the development and mainte-

nance of CS (Sagar et al., 2011).

Intense and prolonged nociceptive input from the

OA knee joint in animals may also result in hyper-

excitability of dorsal horn neurons (Martindale et al.,

2007). Hence, there is firm evidence that CS is pre-

sent in animal models of osteoarthritis.

5.3.1 Localised and widespread hyperalgesia

The role of CS in painful human osteoarthritis has

attracted increasing attention (Akinci et al., 2016),

and various attempts have been made to develop

clinical (Akinci et al., 2016) and experimental mea-

sures (Arendt-Nielsen et al., 2015b).

In general, OA patients are more sensitive to vari-

ous experimental painful stimuli as compared with

age matched controls (Lee et al., 2011b) with 70%

of knee OA patients having at least one somatosen-

sory abnormality (Wylde et al., 2012b).

Several recent meta-analyses (Suokas et al., 2012;

Fingleton et al., 2015) and reviews (Lluch et al.,

2014; Arendt-Nielsen et al., 2015b; Arendt-Nielsen,

2017) have been published providing comprehensive

analyses of all relevant sensory tests investigated

in OA.
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When comparing males and females with symp-

tomatic knee OA, it seems that females show a

higher degree of sensitisation to the various experi-

mental pain stimuli (lower heat, cold, pressure

thresholds/tolerances, greater temporal summation

of pain) compared with males (Bartley et al., 2016).

A strong manifestations of CS in OA has been

shown to be related to high levels of pain (Arendt-

Nielsen et al., 2010; Finan et al., 2013), disability,

poor quality of life (Imamura et al., 2008), increased

spreading sensitisation (Skou et al., 2014a), poor

outcome after total joint replacement surgery (Lund-

blad et al., 2008; Wylde et al., 2015), and high con-

centration of pro-inflammatory cytokines (Lee et al.,

2011a).

The lack of associations between the pain intensity

and objective radiological findings of the individual

OA patient (Davis et al., 1992; Hannan et al., 2000;

Neogi et al., 2009; Skou et al., 2014b) and the exis-

tence of specific OA subgroups (Finan et al., 2013;

Arendt-Nielsen et al., 2014a, 2015a) are strong indi-

cations that pain facilitatory or inhibitory mecha-

nisms are involved. It is not fully understood why

some patients continue to have chronic pain after

joint replacement and why others become pain free,

but emerging evidence suggests that central pain

mechanisms can be involved (Beswick et al., 2012;

Petersen et al., 2015a,b; Wylde et al., 2015).

Assessing pain thresholds from the knee area versus

a remote area will provide information about the

extrasegmental spreading of sensitisation. It has been

shown consistently across different research groups

(Imamura et al., 2008; Arendt-Nielsen et al., 2010;

Lee et al., 2011b; Graven-Nielsen et al., 2012; Wylde

et al., 2012b; Kosek et al., 2013; Egsgaard et al.,

2015) that spreading sensitisation is a feature in OA

patients which most likely depends on the clinical

pain intensity and pain duration (Arendt-Nielsen

et al., 2015b). Lower pressure pain thresholds were

shown to be associated with reduced function,

increased disability, and poor quality of life in patients

(Imamura et al., 2008; Kuni et al., 2015).

Recently studies have shown that preoperative

widespread hyperalgesia is linked to the develop-

ment of chronic postoperative pain following total

joint replacement (Petersen et al., 2015a; Wylde

et al., 2015).

Most studies within this area have been conducted

on knee or hip OA, but Chiarotto et al. found a

reduction in the pressure pain thresholds at all eval-

uated joint and adjacent muscle sites in patients with

unilateral thumb carpometacarpal OA (Chiarotto

et al., 2013).

5.3.2 Temporal summation

Preoperative temporal summation has been shown to

predict the development of chronic postoperative pain

following total knee replacement surgery in patients

with OA (Petersen et al., 2015a, 2016; Izumi et al.,

2017).

Facilitated temporal summation has been found in

patients with pain after total knee replacement as

compared with those who became pain free (Skou

et al., 2014a). In addition, those patients with

chronic pain after knee replacement showed even

more facilitated summation as compared with OA

patients prior to surgery (Skou et al., 2014a).

For simple bedside testing, temporal summation

evoked by repeated mechanical punctate pain stimuli

has been used in OA (Cruz-Almeida et al., 2013;

Finan et al., 2013; King et al., 2013b), and the sum-

mation has shown association with the pain severity

but not the radiographic severity (Neogi et al.,

2015). The subgroup of OA patients with ‘high knee

pain and low knee radiographic grade’ showed more

facilitated temporal summation to punctate pain

stimuli than the other groups (Finan et al., 2013).

Studies using repeated thermal stimuli are less

conclusive as two studies have shown subgroup dif-

ferences when assessed on the forearm (Finan et al.,

2013) and at the knee (Cruz-Almeida et al., 2013).

However, one study did not show any differences

(King et al., 2013b). Ethnic differences have been

found in the facilitation of temporal summation in

patients with OA and hence should be considered as

a source of variation (Goodin et al., 2014).

Repeated pressure stimuli using computer con-

trolled algometry or cuff algometry have also shown

facilitated temporal summation when assessed at the

knee and on the arm/leg with an association with

pain severity and duration but not with radiographic

severity (Arendt-Nielsen et al., 2010, 2015a; Skou

et al., 2013).

5.3.3 Descending pain control

In recent years, the function of the descending path-

ways in patients with musculoskeletal disorders has

been in focus (Curatolo and Arendt-Nielsen, 2015).

A recent study showed that OA patients with facili-

tated temporal summation together with impaired

CPM have more pain after a joint replacement

(Petersen et al., 2016). Along this line OA patients

with chronic pain after knee replacement continue

to have impaired descending control (Skou et al.,

2013). Exercise is known to be advantageous in OA

for pain management (Skou et al., 2015), and some
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of this pain alleviation may be caused by a positive

effect on CPM (Courtney et al., 2016).

A number of studies have found significantly

impaired CPM in OA with an association to both

pain intensity and pain duration (Kosek and Orde-

berg, 2000; Arendt-Nielsen et al., 2010, 2015a; Egs-

gaard et al., 2015). Further, it has been found that

the CPM is restored in patients after knee replace-

ment where the patients became pain free (Kosek

and Ordeberg, 2000; Graven-Nielsen et al., 2012).

On the other hand, Finan et al. (2013) found no

difference in CPM potency between different OA

sub-groups and King et al. (2013b) found no dif-

ferences between OA patients and controls.

Some studies have challenged the reliability of the

CPM assessment due to the large inter- and intra-

individual variation (Oono et al., 2011), and various

attempts have been made to refine the technique

(Biurrun Manresa et al., 2014). Recently the cuff

algometry technique has been applied with one cuff

delivering the conditioning stimulus and another

cuff delivering the test stimulus (Graven-Nielsen

et al., 2012; Petersen et al., 2015a).

It has been suggested that the impaired CPM in

OA is associated with intracortical disinhibition (Tar-

rago et al., 2016).

Taken together, there is firm evidence that CS is

present in patients with painful OA.

5.4 Irritable bowel syndrome

Irritable bowel syndrome (IBS) was selected as a vis-

ceral pain condition with indications of pronounced

CS. The condition shares similarities with other func-

tional pain conditions, such as e.g. fibromyalgia,

whiplash, and endometriosis (Fig. 2).

Perturbations in visceral sensation commonly

characterised by heightened sensitivity to experi-

mental stimulation or physiological events are con-

sidered to be an important pathophysiological facet

of IBS (Farmer and Aziz, 2009). IBS comprises 50%

of referrals to gastroenterologists and affects up to

20% of the US population (Sandler, 1990) and for

many years it has been suggested that CS is an

important feature of IBS (Moshiree et al., 2006).

About 80% of the patients are female and accord-

ingly females with IBS show a greater sensitivity

than matched males to rectal distension (Mayer

et al., 1999; Chang et al., 2006).

IBS patients exhibit a wide variety of extraintestinal

symptoms (back pain, migraine headaches, heart-

burn, dyspareunia, and muscle pain), which support

the central pain facilitation (Whorwell et al., 1986;

Mayer and Raybould, 1990). Furthermore, IBS is fre-

quently occurring together with other disorders

involving CS (Whitehead et al., 2002). Abnormal size

and localisation of the referred pain area has bene

used as a proxy for CS and reorganisation in patients

with functional pain disorders (Mertz et al., 1998).

A variety of acute and chronic experimental stres-

sors coupled with various assessment approaches

have been used to mimic visceral pain conditions.

Delivered at different phases of the life cycle, such

stressors may trigger risk factors for visceral hyper-

sensitivity. Accumulating evidence suggests that the

internal and external validity of such models is ade-

quate particularly with regard to species, specific

gender, age and strain (Larauche et al., 2011; Qin

et al., 2011). In contrast to human studies, in which

self-reported responses to gut distension can be mea-

sured, pseudoaffective markers of the nociception in

animal studies are needed. The most frequently used

marker is that of contractions of the abdominal wall

musculature of the animals, or visceromotor

responses, to isobaric colorectal distensions (Chris-

tianson and Gebhart, 2007).

Animal models of IBS are lacking, but various gas-

trointestinal stressors have shown that CS can be

generated.

5.4.1 Localised and widespread hyperalgesia

Initially, it was assumed that the enhanced sensitiv-

ity was limited to the gut, and over the years many

studies have shown local colon or rectal hyperalgesia

in IBS (Swarbrick et al., 1980; Rossel et al., 1999).

However, many studies have subsequently con-

firmed that IBS also involves CS and therefore

enhanced sensitivity to both visceral and somatic

stimuli (Verne et al., 2001; Verne and Price, 2002).

Hence, generalised cutaneous heat hyperalgesia has

consistently been demonstrated in IBS (e.g. (Bouin

et al., 2001; Jarrett et al., 2014; Moshiree et al.,

2007; Piche et al., 2010; Rodrigues et al., 2005; Vase

et al., 2003; Verne et al., 2001, 2003b; Wong et al.,

2010)) with the strongest degree of hyperalgesia in

which the visceral afferents are likely to converge

onto common spinal segments. This generalised ther-

mal hyperalgesia has been confirmed by neuroimag-

ing (Verne and Price, 2002; Chang et al., 2003;

Verne et al., 2003a; Naliboff and Mayer, 2006). Gen-

eral hypersensitivity has also been found to cold pain

stimulation (Bouin et al., 2001).

Earlier studies showed increases or no differences in

somatic detection and pain thresholds in IBS as com-

pared with healthy controls, but this is likely
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explained by different methodologies rather than a

change in disease characteristics (Cook et al., 1987;

Accarino et al., 1995; Zighelboim et al., 1995; Chang

et al., 2000).

A specific feature of visceral pain is the viscero-visc-

eral and viscero-somatic sensitisation (Giamberardino,

2003) further supporting the central involvement.

The preferred human visceral stimulation in IBS is

the rectum due to the easy access to this segment of

the gut that also seems to be of major importance

for the disease. However, referred pain areas follow-

ing rectal stimulations are difficult to measure as

they are mainly localised in perineum. As IBS is an

intestinal disorder R€ossel et al. assessed the referred

pain areas to stimulation of the sigmoid colon. This

somatic segment is normally localised in the lower

abdomen. They showed that the evoked brain poten-

tials following electrical stimulation of skin inside/

outside the referred pain area differed in IBS

patients, but not in controls (R€ossel et al., 2001).

This supports that changes in the spinal (or suprasp-

inal) convergence of activated visceral afferents to

neurones also receiving somatic input is also a key

feature in IBS, again demonstration the importance

of widespread changes.

5.4.2 Temporal summation

Temporal summation can be assessed in the gut by

repeated electrical (Drewes et al., 1999) or mechani-

cal stimulations (Munakata et al., 1997).

If repeated electrical stimuli are applied to the gut,

the pain will increase during the stimulation and the

referred pain areas expand (Arendt-Nielsen et al.,

1997a). Referred visceral pain is a central

phenomenon (Arendt-Nielsen et al., 2000) support-

ing the concept that the repeated input activates

central mechanisms.

IBS patients show facilitated temporal summation

to electrical colonic stimulation, and this also sup-

ports that CS plays a major role in the symptom

manifestations (Rossel et al., 1999).

5.4.3 Descending pain inhibition

A number of studies have been performed on

descending control in IBS patients with visceral pain.

Endogenous inhibitory mechanisms are found atten-

uated in patients with irritable bowel syndrome

(King et al., 2009; Heymen et al., 2010; Piche et al.,

2011; Jarrett et al., 2014).

The less efficient CPM effect has been further vali-

dated in neuroimaging studies (Wilder-Smith et al.,

2004; Song et al., 2006) and by recording of the

nociceptive withdrawal reflex (Coffin et al., 2004).

Taken together, there is firm evidence that CS is

present in patients with IBS.

6. Common sensitisation features across
chronic pain conditions

From the above selected examples of neuropathic,

musculoskeletal, joint, and visceral chronic pain it is

evident that CS is present to a greater or lesser

extent across the different chronic pain conditions.

As the experimental methodologies used for assess-

ing the different components differ, it is not possible

to rank them according to most or least CS. How-

ever, there seems to be a tendency that deep somatic

or visceral chronic conditions have the most

Centralised
Sensitisation

TMD

IBS

TTH/CTTH
Migraine

EndometriosisPrimary
dysmenorrhea

Fibromyalgia

Whiplash

Osteoarthrosis

Vulvodynia

Post traumatic
stress disorder

Myofascial
pain syndrome

Pelvic pain/ 
interstitial

cystitis

Multiple 
chemical 
sensitivity

Restless legs

CLPB

Neurogenic
pain

Chronic Pancreatitis

Rheumatoid 
arthritis

Chronic fatigue syndrome.

Shoulder impingement 
syndrome

Postoperative 
chronic pain

Non-cardiac 
chest pain.

Figure 2 A listing of the many chronic pain conditions in which different aspects of the central sensitisation phenomenon have been assessed

and validated mechanistically with quantitative sensory testing. (OA = Osteoarthritis, CLBP = Chronic Low Back Pain, TMD = Temporomandibular

Disorders, TTH/CTTH = Tension Type Headache/Chronic Tension Type Headache, IBS = Irritable Bowel Syndrome).
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profound effect on the development of generalised

sensitisation. As patients with, e.g. musculoskeletal

pain, are among those who are to live the largest

percentage of their life with their disability, the time

aspect may play a role for the central manifestations.

The current summary highlights the development

in the field. In the past, the contribution of CS in

chronic pain was claimed to be based on non-

mechanistic assessments whereas in more recent

years mechanistic quantitative sensory profiling has

provided more firm confirmations. However, it is,

evident that the currently available tools for profiling

CS are far from complete as many additional non-

assessable mechanisms contribute to the manifesta-

tions.

An important finding is that for many conditions

the CS can almost momentarily be reversed if the

peripheral pain generators are found and inhibited

or if specific receptors involved in the central pain

amplification are blocked by, e.g. NMDA-antagonists.

This has also been verified in preclinical studies.

Chronic pain conditions associated with psycho-

logical and psychiatric disorders can also show signs

of CS which may rely less on the peripheral drive

for initiation and maintenance (Arendt-Nielsen

et al., 2012b).

However, the selected conditions seem representa-

tive for the central manifestations in most other

chronic pain conditions (Yunus, 2007; Bourke et al.,

2015) as listed in Fig. 2. Over the last decades many

terms have been introduced to describe this group of

pain syndromes: idiopathic pain syndromes and cen-

tral sensitivity syndromes. However, as indicated

above most of this name giving was uniquely based

on anatomical descriptions of the painful area with-

out any mechanistic clues.

The current state of knowledge has two immediate

consequences:

(1) What is the role of CS in the development of

chronic postoperative pain?

(2) How should the management strategies be opti-

mised according to the profile of CS?

7. The role of central sensitisation for
the development of chronic
postoperative pain

For a long time, it has been debated how to min-

imise the development of chronic postoperative pain

and many different approaches have been imple-

mented (minimal surgery, nerve sparing surgery,

pre-emptive analgesia, etc.). Patients with and with-

out pain prior to surgery (e.g. thoracotomies,

mastectomies) can develop chronic postoperative

pain indicating that pain is not a prerequisite for this

development. It is known that the pre-operative pain

intensity and young age are two predictors for devel-

opment of chronic postoperative pain (Pierides et al.,

2016).

Factors such as physical health, mental health,

preoperative pain in the surgical field, and preopera-

tive pain are all additional contribution factors

(Montes et al., 2015).

Preoperative assessment of CS using mechanistic

quantitative sensory testing for predicting chronic

post-operative outcome has been implemented in

many laboratories in recent years (Yarnitsky et al.,

2008; Granot, 2009; Wilder-Smith, 2011).

It seems that sensory tests which are considered as

static methods (such as a threshold to a phasic stim-

ulus) and not designed to assess CS are less likely to

predict chronic postoperative outcome after, e.g.

cholecystectomy (Bisgaard et al., 2005).

Facilitated temporal summation seems indicative

of development of chronic postoperative pain after

abdominal surgery (Weissman-Fogel et al., 2009)

and knee (Petersen et al., 2015a) and hip (Izumi

et al., 2017) alloplastic surgery. Assessing widespread

hyperalgesia by pressure pain thresholds seems

indicative of chronic postoperative pain outcome

after knee (Petersen et al., 2016) and hip (Wylde

et al., 2015) replacements.

Impaired descending pain control (Yarnitsky et al.,

2008; Granot, 2009; Wilder-Smith, 2011) may to

some degree be indicative of how vulnerable patients

are to develop chronic postoperative pain.

Recently, combinations of the summation and

CPM parameters were suggested (Carvalho et al.,

2016) as even more indicative of outcome (Arendt-

Nielsen, 2017). The temporal summation is generally

found to be highly reliable (Staahl et al., 2006; Pry-

seley et al., 2009); whereas the CPM paradigm is less

robust with much higher variability (Imai et al.,

2016; Kennedy et al., 2016).

Both mechanisms are modulated by centrally act-

ing drugs shown efficacy in neuropathic pain (e.g.

gabapentinoids, duloxetine, venlafaxine, ketamine,

buprenorphine) indicating such mechanisms are

important drug targets (Arendt-Nielsen, 2015). Fur-

ther studies are needed to investigate if matching

patients’ phenotype profiles (e.g. facilitated temporal

summation + impaired CPM, facilitated temporal

summation + normal CPM, normal temporal sum-

mation + impaired CPM) with drug profiles can pro-

vide valuable information guiding the development

of preoperative individualised pharmacotherapy.
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However, as data are still conflicting, more studies

investigating prediction of sensitivity and specificity

are needed.

This concept that the degree of CS seems impor-

tant for the chronic outcome is further substantiated

by the fact that patients with additional painful

comorbidities have a higher risk of developing

chronic postoperative pain after total knee replace-

ment (Wylde et al., 2012a).

CPM normalises after pain-free recovery after joint

replacement (Kosek and Ordeberg, 2000; Graven-

Nielsen et al., 2012) and the widespread hyperalge-

sia will also be normalised (Aranda-Villalobos et al.,

2013).

For some types of surgery, the patients may be

offered an additional surgical procedure if they

develop chronic postoperative pain. However, this

may be critical as the pain system may already be in

a facilitated stage. Most patients undergoing revision

surgery after total knee replacement will continue to

experience pain even at a higher level (Petersen

et al., 2015b). Those patients with pain after revision

surgery have continued enhanced temporal summa-

tion as compared with patients without pain (Skou

et al., 2013) and develop more prominent spreading

sensitisation than before the revision surgery (Skou

et al., 2014a).

Therefore, it could be anticipated that drugs like

ketamine given preoperatively could have a benefi-

cial effect on the development of postoperative pain.

However, this could not be documented with a 24 h

ketamine infusion prior to thoracotomy (Duale

et al., 2009) or immediately postoperatively (Joseph

et al., 2012). On the contrary, some studies showed

preventive effect on gabapentinoids (Sen et al.,

2009; Buvanendran et al., 2010). These studies

needs replication as another recent study found no

effect on chronic postoperative outcome of 600 mg

of gabapentin given 1 h prior to carpal tunnel syn-

drome surgery (Sadatsune et al., 2016), and thus

there is a need for more long-term follow up studies

(Zakkar et al., 2013). Furthermore, the preventive

effect is not supported by pre-clinical studies (Yang

et al., 2014).

8. How to interact with the central
sensitisation in chronic pain?

Ideally, the prevention and management of chronic

pain in patients with heightened CS should target

the individually involved mechanisms. Individu-

alised, tailored, mechanism-based therapy is cur-

rently not possible. Patient management is more

complex than just addressing a few factors, but

involves trial and error.

Fundamentally, two different methods of damping

the CS are known: (1) blocking the peripheral drive

which is maintaining the sensitisation or (2) inter-

acting with the central transmitter systems involved

in the facilitated gain.

As a peripheral block may generally have short-

lasting effects and may be technically challenging to

administer on a regular basis, the following will pri-

marily focus on the interaction with central trans-

mitter systems.

8.1 Targeting temporal summation

Over the years, many studies have shown that wind-

up in rat dorsal horn neurons is inhibited by NMDA

receptor antagonists (Davies and Lodge, 1987; Dick-

enson and Sullivan, 1987) as well as by an antagonist

of the glycine site in the NMDA receptor channel

complex (Chapman and Dickenson, 1992). The

NMDA receptor plays a key role in temporal summa-

tion, but is very difficult to block even when using

general anaesthesia or epidural analgesia. A spinal

block is needed to inhibit temporal summation (Cura-

tolo et al., 1997) whereas an epidural blockade (Cura-

tolo et al., 1995) or volatile anaesthetics are not

efficient (Petersen-Felix et al., 1996).

Examples of drugs showing an inhibitory effect on

temporal summation are e.g. dextromethorphan

(Price et al., 1994), ketamine (Arendt-Nielsen et al.,

1995), imipramine (Enggaard et al., 2001), gabapen-

tin (Arendt-Nielsen et al., 2007), oxycodone (Suzan

et al., 2013), and venlafaxine (Yucel et al., 2005).

In a comparative study, gabapentin and carba-

mazepine were found to reduce temporal summation

pain whereas amitriptyline increased temporal sum-

mation pain (Harding et al., 2005). This is the first

study where facilitation of temporal summation has

been found.

In a study by Curatolo et al. (2000), the effect of

remifentanil was found to be more efficient on mus-

cle temporal summation as compared to with cuta-

neous summation.

The facilitated temporal summation in chronic

pain patients is efficiently inhibited by NMDA recep-

tor antagonists (ketamine and amantadine). This has

been found in patients with surgical incisions (Stub-

haug et al., 1997), postherpetic neuralgia (Eide

et al., 1994), phantom limb pain (Nikolajsen et al.,

1996), chronic postsurgical neuropathic pain (Pud

et al., 1998), and fibromyalgia (Graven-Nielsen

et al., 2000).
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Unfortunately, abnormal temporal summation in

patients with neuropathic pain cannot predict the

clinical effect of imipramine or gabapentin (Ras-

mussen et al., 2004) and some clinical studies have

not shown an effect on facilitated temporal summa-

tion by lamotrigine (Finnerup et al., 2002) or

memantine (Eisenberg et al., 1998; Nikolajsen et al.,

2000).

In the studies in which the intervention reduced

the temporal summation a parallel effect was seen

on the clinical pain intensity indicating the impor-

tance of the central integration in CS.

8.2 Targeting descending pathways

Many preclinical studies have demonstrated drug

modulatory effects on the inhibitory descending

modulation including opioids, and monoaminergic

agonists (e.g. Bannister et al., 2015; Ossipov, 2012;

Wen et al., 2010).

From preclinical studies, it has been concluded

that noradrenaline primarily promotes descending

pain inhibition while serotonin promotes both

descending pain inhibition and descending pain facil-

itation and thus may have both anti-nociceptive and

pro-nociceptive effects (Suzuki et al., 2004). Sero-

tonin-noradrenaline reuptake inhibitors (SNRIs),

such as duloxetine, have a broad efficacy across a

number of different chronic pain conditions, such as

OA, fibromyalgia and peripheral neuropathic pain

(Lunn et al., 2014).

The a2-d ligands centrally inhibit the release of

neurotransmitters (e.g. noradrenaline, serotonin,

substance P) and potentially reduce CS by decreasing

descending pain facilitation (Donovan-Rodriguez

et al., 2006; Bee and Dickenson, 2008; Asante and

Dickenson, 2010). Animal studies have validated

that pregabalin reduces the descending serotonergic

facilitation (Rahman et al., 2009), but as initially dis-

cussed human CPM studies cannot separate between

increased inhibition and decreased facilitation. Prega-

balin was also found to increase the deficient CPM

in chronic pancreatitis more than placebo (Bou-

wense et al., 2012).

Due to the dual action of tapentadol (l-opioid
receptor agonist plus a norepinephrine reuptake

inhibitor) it would be expected to enhance CPM

although this was only the case for repeated admin-

istration over weeks (Niesters et al., 2014) as

opposed to a single dose (Martini et al., 2015). The

single dose study was conducted in healthy volun-

teers and it could be that an effect would have been

seen in a chronic pain patient with deficient CPM.

The effect of repeated dosing with tapentadol

matches very well many chronic pain conditions

(Riemsma et al., 2011) with impaired CPM such as

OA pain (Steigerwald et al., 2012b), LBP (Buynak

et al., 2010; Steigerwald et al., 2012a; Baron et al.,

2016), painful peripheral diabetic neuropathy

(Schwartz et al., 2015; Vadivelu et al., 2015), and

cancer pain (Kress et al., 2014).

Few studies have systematically evaluated the

effects of pure opioids on CPM in healthy volun-

teers; oxycodone showed no effect (Suzan et al.,

2013) whereas buprenorphine (Arendt-Nielsen et al.,

2012a), morphine (Le Bars et al., 1992; Martini

et al., 2015) and fentanyl (Arendt-Nielsen et al.,

2012a) affected CPM.

There are conflicting data on the effect of nalox-

one/naltrexone on CPM as some found inhibition of

CMP (Pertovaara et al., 1982; Willer et al., 1990;

King et al., 2013a) whereas others found no effect

(Peters et al., 1992; Edwards et al., 2004; Sprenger

et al., 2011).

Modulatory effects on CPM have been found by

dexmedetomidine (a selective a(2)-adrenoceptor ago-
nist) (Baba et al., 2012) and apomorphine (a non-

specific dopamine agonist) (Treister et al., 2013).

Recently it has been suggested that calcitonin may

interact with the descending pain modulation as calci-

tonin interacts with serotonin, and a synergetic anal-

gesic effect between calcitonin and serotonin reuptake

inhibitor antidepressants has been shown (Arendt-

Nielsen et al., 2009) indicating various alternative

options to interact with the descending pathways.

The evidence on the effect of ketamine on CPM is

still conflicting (Niesters et al., 2013), but it may

enhance pain facilitation and thereby reduce CPM

(Niesters et al., 2011).

9. Limitations and future perspectives

The current review addresses mainly the pharmaco-

logical management approaches and does not address

how other procedures such as exercise and the

plethora of non-pharmacological strategies around

cognitive modulation can influence the pain sensiti-

sation in the selected clinical populations. The

selected four clinical conditions are not entirely rep-

resentative of all chronic pain stages but were

selected as many quantitative, mechanistic studies

have been published on CS in these groups. Further-

more, brain imaging, electrophysiological and bio-

chemical studies were not reviewed.

Despite the indirect measures of pain sensitisation

by mechanism, related proxies have been developed

© 2017 European Pain Federation - EFIC� Eur J Pain 22 (2018) 216--241 231

L. Arendt-Nielsen et al. Assessment and manifestations of central sensitisation



and applied across different chronic pain conditions,

and the results point in the same direction that

chronic pain patients, despite the origin of the pain,

develop different degrees of sensitisation. As the

manifestations are different, it is important to

develop test batteries specifically for profiling the

sensitisation features in specific pain conditions.

There is a particular lack of tools to profile CS in

musculoskeletal and visceral chronic pain conditions.

The field of linking pain phenotype with treatment

(pharmacological, non-pharmacological, surgical)

outcome in the context of pain has so far been

slightly disappointing. Hence, there is a need to fur-

ther develop tools and improve the specificity and

sensitivity of the predictors.

As sensitisation is a neuroplastic phenomenon, it

can change rapidly or slowly depending on the con-

dition. However, based on cross-sectional studies the

concept is that for many conditions the sensitisation

is developing slowly, but solid longitudinal studies

are needed to understand the progression of sensiti-

sation and the factors controlling this.

The educational aspects of sensitisation should be

broadened up to include not only pain specialists but

also other relevant clinical disciplines (e.g. surgery,

oncology, gerontology, paediatric, psychiatry). This is

important as chronic pain patients often cannot

understand why a limited trauma or even lack of a

known/visible trauma can result in such disabling

pain. Explaining that the pain system is not static but

dynamic and undergoes changes helps the patients to

better understand and accept their current situation.

10. Conclusions

Central sensitisation appears to play a key role across

many chronic pain conditions and contributes to the

(1) transition process from acute to chronic pain, (2)

amplification of pain in existing chronic pain condi-

tions, and (3) promotion of the development of

chronic post-operative pain.

Features such as spreading sensitisation, enhanced

central temporal integration, and disproportional bal-

ance between descending inhibitory and facilitatory

pathways will promote pain when acting individu-

ally or together. In addition to the many other fac-

tors (e.g. genetics, psychological, psychiatric, social)

involved in chronic pain, it is important to consider

quantitative tools for mechanistic phenotyping of

patients as this may provide information helping to

select the most appropriate mono- or polypharmacy

and hence develop more individualised targeted pain

management regimes.
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