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a b s t r a c t

Pain is commonly assessed by subjective reports on rating scales. However, in many experimental and
clinical settings, an additional, objective indicator of pain is desirable. In order to identify an objective,
parametric signature of pain intensity that is predictive at the individual stimulus level across subjects,
we recorded skin conductance and pupil diameter responses to heat pain stimuli of different durations
and temperatures in 34 healthy subjects. The temporal profiles of trial-wise physiological responses were
characterized by component scores obtained from principal component analysis. These component
scores were then used as predictors in a linear regression analysis, resulting in accurate pain predictions
for individual trials. Using the temporal information encoded in the principal component scores
explained the data better than prediction by a single summary statistic (ie, maximum amplitude). These
results indicate that perceived pain is best reflected by the temporal dynamics of autonomic responses.
Application of the regression model to an independent data set of 20 subjects resulted in a very good pre-
diction of the pain ratings demonstrating the generalizability of the identified temporal pattern. Utilizing
the readily available temporal information from skin conductance and pupil diameter responses thus
allows parametric prediction of pain in human subjects.

� 2014 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

1. Introduction

Pain is a subjective experience and is therefore assessed by sub-
jective reports, which are commonly mapped to a numerical rating
scale or a visual analogue scale [29]. However, in many circum-
stances an objective pain assessment is important. For example,
there are situations in which a patient is not able to understand
the rating scales (eg, in children), or the report may be biased in
other scenarios. The latter is relevant, because subjects may form
expectations about the desired study outcome. This might actually
be the case in most of the studies on pain, for example, when test-
ing a drug or evaluating some behavioral intervention.

Candidates for an objective auxiliary measure of pain are
autonomic nervous system responses that are related to pain per-
ception [9,10], for example, skin conductance [10,18,22,23,34] and
pupil diameter [8,10,13,16,27]. Changes in skin conductance levels

correlate with pain ratings of heat pain stimuli [23], and pupil dila-
tion amplitudes reflect electric stimulation intensity [8].

Studies investigating these measures often characterize physio-
logical responses by a single summary statistic (eg, maximum
amplitude) and relate that parameter to pain reports [8,13,16,22,
23,27,34]. As autonomic responses typically entail both phasic
and tonic components, this approach may neglect the information
present in the full time-course. One way to use this information is
principal component regression (PCR): individual trial time-
courses are represented by scores of the most important principal
components [15], thereby providing a more accurate representa-
tion of the time-course than a summary statistic. The main objec-
tive of the current study was therefore to investigate whether pain
prediction can be improved by incorporating temporal information
present in autonomic recordings.

Ideally, an objective measure of pain would be available at
minimal costs, both monetary and with regard to the experimental
design. Additionally, a signal that is reliable enough to work on
individual trials is more helpful than a measure aggregated across
trials. As the perceived intensity of painful stimuli varies
considerably across studies and subjects, a parametric prediction
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of different pain intensity levels at the trial level seems desirable
instead of relying on binary pain vs no-pain reports [31]. Further-
more, a prediction model would optimally be able to predict
unseen data from an independent test data set without re-fitting
subject specific parameters. In order to test an objective, paramet-
ric marker of pain intensity, predictive at the trial level across
subjects, we recorded autonomic responses to a set of different
cutaneous heat pain stimuli. The predictive performance of the
PCR model utilizing detailed temporal information was then com-
pared to a prediction based on summary statistics (ie, amplitudes)
extracted from the physiological responses.

A recent study reported that pain prediction by a combination
of several physiological measures outperforms prediction by single
measures [34]. We therefore recorded 2 autonomic measures, skin
conductance and pupil diameter, and combined these for paramet-
ric pain prediction.

2. Materials and methods

2.1. Samples

Thirty-seven healthy male subjects participated for payment in
this study. All except one subject were right-handed. Subjects re-
ported no history of neurological, psychiatric, or skin diseases
and had not taken any medication during the last 48 hours prior
to the experiment. One subject had to be excluded because of no
evident skin conductance response. Two further subjects had to
be excluded because of poor eye-tracking data quality. The final
sample thus consisted of 34 subjects, aged 21-37 years (mean
age: 25.8 years). In order to evaluate the generalizability of the
PCR model, we used a second independent data set. This sample in-
cluded 20 additional male subjects (mean age: 27.5 years; range:
22-39 years) participating in an experiment very similar to the
main experiment. The Ethics committee of the Medical Chamber
Hamburg approved the study and all subjects gave written in-
formed consent.

2.2. Procedure

Subjects were individually tested in an eye-tracking laboratory
with controlled equal illumination in all sessions. First, subjects
were informed about the study and provided informed consent.
Subjects then washed their hands with warm water, but without
soap, to optimize skin conductance recording. Skin conductance
recording electrodes were attached to the subject’s left hand. To
calibrate the pupil diameter properly, 2 epochs of 5 seconds dura-
tion were recorded with artificial pupils of 5 and 10 mm diameter.
Fake pupils were fixed over the closed right eye while the subjects
placed their head in the headrest of the eye tracker. Subsequently,
a 9-point gaze calibration was performed with the subject’s head
positioned in the headrest. Pain thresholds (mean: 45.7�C, SD:
3.0�C) were then determined according to the method of limits
(1�C/s slope). The main experiment consisted of 32 cutaneous heat
pain trials, split into 4 blocks of 8 trials each. The thermode was
moved to a different patch on the volar forearm after completion
of a block to prevent sensitization. During heat pain stimulation,
skin conductance and pupil diameter were recorded.

The heat pain stimulation paradigm consisted of 8 different
stimuli, each repeated 4 times. Each stimulus occurred once per
block. Stimulation order was pseudo-randomized across subjects
such that each stimulus was equally often at the first position
within a block. Stimulus temperatures were 45, 46, 47, and
47.5�C and lasted 8 or 20 seconds, resulting in 8 different combina-
tions of temperature and duration. Stimulus duration included a
�1.5-second ramp-up and -down period and a plateau lasting 5

(short trials) or 17 seconds (long trials), respectively. Each trial
(Fig. 1A) consisted of an anticipation period of 13–17 seconds, heat
pain stimulation, a 5-second delay, pain rating on a visual analogue
scale (VAS), and a 12-second intertrial interval. Subjects were
asked to fixate a crosshair at the center of the screen and to refrain
from blinking during the anticipation and stimulation periods. Pain
stimulation was not cued, that is, the crosshair remained un-
changed during both periods. Pain ratings were completed on a
VAS anchored ‘‘no pain’’ and ‘‘unbearable pain.’’ The delay between
heat stimulation and rating was introduced to prevent contamina-
tion of autonomic recordings by button presses [20]. During the
intertrial interval, a blank screen was presented and subjects were
allowed to move their eyes freely. After each block, subjects could
rest for a few minutes. The whole procedure lasted about
45 minutes.

2.3. Data acquisition

Response logging, thermode triggering, and synchronization
with the physiological recordings were controlled by Presentation
software (Neurobehavioral Systems, Berkeley, CA, USA). A 3 � 3 cm
Peltier thermode (Pathway ATS; Medoc Advanced Medical Sys-
tems, Ramat Yishai, Israel) was used to deliver thermal stimulation
on the left volar forearm. Skin conductance was recorded using a
constant voltage (0.5 V) Biopac MP100 system (Biopac Systems,
Inc., Goleta, CA, USA) at a sampling rate of 250 Hz. Ag/AgCl record-
ing electrodes filled with 0.05 M NaCl electrolyte were placed on
thenar and hypothenar eminences of the left hand. Pupil diameter
was recorded at a sampling rate of 1000 Hz using an Eyelink 1000
system (SR Research Ltd., Mississauga, ON, Canada).

2.4. Data analysis

All data analyses were completed using MATLAB v7.12 (Math-
works, Natick, MA, USA) and SPSS 19 (IBM, Armonk, NY, USA). After
preprocessing the physiological data, we predicted pain ratings
using 2 different sets of predictors: (1) using summary statistics
describing the physiological response of each trial (ie, amplitude)
and (2) utilizing the temporal information of the physiological re-
sponses for prediction. The former will be referred to as summary
statistic regression and the latter will be referred to as PCR [15].
According to a recent study [34], simultaneous use of multiple
autonomic measures differentiates best between pain stimulus
levels. Hence, we predicted pain simultaneously by skin conduc-
tance and pupil measures. Results are summarized in Table 1. For
completeness, we report results on separate regression models
(ie, only skin conductance or pupil dilation plus intercept) in
Table 2.

The effect of stimulus duration and temperature on pain ratings
was tested using a 2 � 4 repeated-measure analysis of variance.

2.4.1. Skin conductance
Skin conductance traces were down-sampled to 25 Hz, low-

pass filtered at a cutoff frequency of 1 Hz, and epochs from 3 sec-
onds before to 5 seconds after stimulus presentation were selected
for further analyses. Trials with recording artifacts were removed
from further analyses (n = 22; 2%). To quantify the skin conduc-
tance response with a summary statistic, we extracted 3 different
parameters. The skin conductance response (SCR) amplitude was
calculated by subtracting the local minimum at the onset of the
first SCR from the first peak. The SCR onset was required to occur
between 1 and 5 seconds after stimulus onset. We chose this inter-
val because the thermode needs 1–2 seconds to reach its target
temperature. SCR amplitudes below 0.02 lS were set to zero. Skin
conductance level (SCL) was computed by averaging the skin con-
ductance trace from stimulus onset until 5 seconds after stimulus
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offset and subtracting the average amplitude of baseline immedi-
ately 1 second before stimulus onset. The third measure was the
skin conductance global amplitude (SCG), which is the difference
between the maximum during the stimulation phase (1 second
after stimulus onset to 5 seconds after stimulus offset) and the 1-
second baseline before stimulus onset. The SCR and SCG values
were log-transformed before averaging [35].

2.4.2. Pupil diameter
Eye-tracking data were recorded from 3 seconds before to 5 sec-

onds after heat stimulation, resulting in single epochs for each trial.
Periods of 100 ms before and after blinks were removed from the
pupil diameter traces and the whole blink period was linearly
interpolated. Trials in which 50% or more of samples had to be re-
placed were discarded (256 trials, 23%). Excluded trials were

equally distributed across stimulation conditions, and exclusion
of these trials did only marginally change predictive accuracy.
Pupil data were then down-sampled to 25 Hz. Pupil diameter
was linearly transformed from arbitrary values to mm by using
the calibration recordings with the artificial pupils of 5 and
10 mm diameter. Analogous to the skin conductance parameters
(SCR, SCL, SCG), we calculated summary statistics for the pupil
diameter. The pupil dilation response (PDR) was computed from
the first local minimum after stimulus onset to the first local max-
imum. Pupil dilation level (PDL) was computed as the average
diameter during the period from stimulation onset to 5 seconds
after stimulus offset minus baseline (1 second before stimulus on-
set). The pupil diameter global peak (PDG) was defined as the glo-
bal maximum during the same period as used for the PDL minus

Fig. 1. Trial structure and principal component regression. (A) Each trial consisted of anticipation, heat pain stimulation, delay, visual analogue scale pain ratings and
intertrial interval (ITI). The anticipation period randomly varied between 13 and 17 seconds. Pain stimulation was either 8 or 20 seconds, with a temperature of 45, 46, 47, or
47.5�C. During ITI, subjects were allowed to freely move their eyes. They were asked to fixate on a central crosshair during anticipation, pain stimulation, and the delay. (B)
Outline of the principal component regression (PCR) analysis. In a first step, the most important principal components were computed using principal component analysis (1).
The original data matrix was then multiplied by the principal components to obtain component scores for each trial (2). Finally, these component scores were used as
predictors of pain ratings in linear regression analysis (3). Please note that no trial variable was used as a predictor in the regression analysis. Only an intercept and 4
component scores per trial were included in the model. The 4 principal components computed for the long trials are shown in the second panel.

Table 1
Model fits for summary statistic and principal component regression (PCR).

Short trials Long trials

Summary statistic PCR Summary statistic PCR

BIC 2556.2 2545.2 2606.9 2541.2
RMSE 21.0 20.4 25.8 23.4
r 0.60 0.63 0.62 0.70
Adj. R2 0.36 0.39 0.38 0.49

BIC, Bayesian information criterion; RMSE, root mean squared error; r = Pearson’s
correlation between observed and predicted pain ratings.

Table 2
Model fits for principal component regression based on single autonomic variables.

Short trials Long trials

Skin
conductance

Pupil
diameter

Skin
conductance

Pupil
diameter

BIC 2592.8 2606.6 2635.0 2591.9
RMSE 21.6 21.9 26.4 24.9
r 0.57 0.55 0.60 0.65
Adj. R2 0.32 0.30 0.35 0.42

BIC, Bayesian information criterion; RMSE, root mean squared error; r = Pearson’s
correlation between observed and predicted pain ratings.
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prestimulus baseline. As with the skin conductance data, PDR and
PDG were log-transformed.

2.4.3. Regression analyses
To evaluate the bivariate relationships between stimulus fea-

tures and subjects’ behavioral and physiological responses, we
computed correlations of temperature and pain ratings with sum-
mary statistics (SCR, SCL, SCG, PDR, PDL, and PDG) separately for
short and long trials. Pearson’s correlation coefficients were com-
puted within each subject, Fisher z-transformed, averaged across
subjects, and inverse transformed. For both short and long trials,
the bivariate correlation between pain ratings and the global
amplitude (SCG and PDG) was highest. In order to predict pain rat-
ings from physiological data, we specified linear regression models
separately for long and short trials. In total, 4 regression models
were specified, 2 for the summary statistics approach (one for
short and one for long trials) and 2 for the PCR approach (for short
and long trials, respectively). To predict pain by summary statis-
tics, SCG, PDG, and an intercept were used as predictors in linear
regression analyses. The PCR models (see below) included 5 predic-
tors – an intercept and 4 principal component scores. All analyses
involving physiological measures are based on a total of 815 valid
trials (417 short trials and 398 long trials).

In order to utilize the information present in the time-course of
the physiological measures, we adopted a PCR approach [15,28,
36,37]. The original time-courses organized in matrix X (with n tri-
als �m data samples) cannot be used as pain predictors for the fol-
lowing reasons: Since subsequent data samples within time-series
data have nonzero autocorrelation, they are dependent on each
other. This leads to highly correlated columns (1. . .m) within the
predictor matrix, and multicollinearity poses a problem for regres-
sion analysis. Therefore, regression weights become highly unsta-
ble with increasing numbers of predictors. To overcome these
problems, PCR first extracts principal components from the set of
predictors (here, data points from pupil diameter and skin conduc-
tance) and then uses the component scores of each trial as predic-
tors of the pain ratings (Fig. 1B). By using only scores of the most
important components, the number of predictors is reduced and
multicollinearity is removed because principal components are
orthogonal to each other. Hence, PCR can be seen as a feature selec-
tion technique that uses only the most important components of
the physiological time-courses.

In order to predict pain by component scores, we range cor-
rected (0-1) pupil and skin conductance traces within subjects
and concatenated both physiological traces of each trial. Using
principal component analyses, we extracted the first 4 principal
components across trials. The 4 principal components accounted
for about 85% of the variance explained by all components. We
chose to extract 4 principal components because this number of
components achieved the lowest Bayesian information criterion
(BIC) value combined for short and long stimulus durations. The
component scores S are then given by S = XP, where X is the origi-
nal data matrix, and P the m � 4 matrix of principal components.
This resulted in a dramatic reduction of dimensionality where each
single trial can be expressed by a vector of 4 weights. Component
scores for each single trial (S) were then used to predict pain
ratings using standard regression analysis, producing regression
coefficients (b) for the intercept and the principal components.
Please note that due to the concatenated physiological data, this
regression model combines skin conductance and pupil diameter
as predictors (Fig. 1B).

By multiplying the principal components P with the obtained
regression coefficients b, the latter were projected to the time
space for interpretation (w = Pb). The vector w contains prediction
weights for each data sample of the pupil and skin conductance
recordings. The weights in w can also be used to predict pain

scores from new physiological recordings without conducting a
new principal component analysis. Although we used an intercept
in the regression models, w was calculated without the intercept.
In order to predict pain ratings from new data sets, the intercept
has to be added again.

Although the data are hierarchically structured (trials nested
within subjects), we chose a single-level regression model for the
following reasons: We aimed at identifying prediction weights that
can be applied to new data sets. Therefore, we assumed fixed inter-
cepts and slopes across subjects and data sets. This may degrade
the model fit in the training data. To estimate performance
differences between fixed and random intercept models, we also
estimated a regression model with random subject intercepts.
However, with intraclass correlations of qshort = 0.176 and
qlong = 0.113, the sample intercepts for short and long trials chan-
ged only slightly compared to the single-level model (short: 22.0
vs 21.8; long: 46.2 vs 45.7). Applying the sample intercept and
slopes from the random intercept model (long trials) to an inde-
pendent test data set (see Section 2.4.4) did not change perfor-
mance of this cross-validation (DRMSE = �0.034; Dr = �0.007).

2.4.4. Model evaluation
In order to compare the 2 regression models against each other,

we computed BIC values [32]. The BIC gives an overall estimate of
the model fit in relationship to the number of predictors and sam-
ple size. This allows for direct comparison of model fits indepen-
dent of the number of model parameters. For the case of linear
regression, BIC values are given by

BIC ¼ n logðr̂2Þ þ k logðnÞ

where n is the sample size, r̂2 is the maximum likelihood estimator
of the error variance, and k is the number of predictors [19]. Lower
BIC values indicate better model fit. In addition to the BIC, we
computed the root mean squared error (RMSE), the Pearson’s corre-
lation coefficient r between observed and predicted pain ratings,
and the adjusted R2 value for the regression models. Correlations
between observed and predicted data for PCR and summary statis-
tic regression were compared using a z-test [24].

By projecting the regression coefficients b back to the time-do-
main, a vector of prediction weights w can be obtained. By apply-
ing the prediction weights w to a new data set, one can obtain pain
predictions for an independent study. In order to evaluate the gen-
eralizability of the PCR model, we used the weight vector w and
applied it to data from an independent validation sample. This data
set consisted of pupil and skin conductance recordings from 20
additional subjects. The experiment was a heat pain stimulation
paradigm in which subjects fixated a central crosshair. Subjects
rated heat pain stimuli of 20 seconds duration and temperatures
of 45, 46, 47, and 47.5�C and did not complete any additional task.
Heat stimulation was also applied to the left forearm, and each
stimulus was applied 4 times distributed over 2 blocks. All other
aspects of data acquisition and data processing were identical to
the main sample. We used the weights w from the long trial PCR
model. Each data sample from the validation set was then multi-
plied by the respective weight from the PCR. We then computed
the RMSE and the correlation between predicted and observed pain
ratings to evaluate the PCR model generalizability.

In order to estimate the significance of individual sample
weights, we performed a permutation analysis. By randomly shuf-
fling the pain ratings with respect to the physiological data 10,000
times, we computed a null distribution of prediction weights w,
separately for short and long trials. For each permutation, we esti-
mated regression weights and projected them to the time space.
Based on these null distributions, we could determine P-values
for weights at each data point. False discovery rate [3] was used
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to control for multiple comparisons at a significance level of
P < 0.05.

As pain ratings were not standardized, the resulting regression
weights are therefore also unstandardized, that is, their magnitude
scales with the dependent variable and the duration of the physi-
ological epochs. Hence, weight magnitudes cannot be directly com-
pared across trial lengths.

3. Results

3.1. Stimuli and pain ratings

First, we evaluated the dependence of pain ratings on stimulus
features (ie, temperature and duration). A repeated-measure
analysis of variance revealed significant main effects for tempera-
ture [F(3,99) = 526.7; P < 0.001] and duration [F(1,33) = 553.9;
P < 0.001], as well as a significant interaction [F(3,99) = 56.4;
P < 0.001]. Evaluation of the mean pain ratings revealed that pain
increased with stimulus duration and temperature, as would be
expected. This increase was more pronounced for long, as com-
pared to short, trials (Fig. 2).

3.2. Evoked responses

Inspecting the evoked skin conductance and pupil responses
(Fig. 3A) revealed several findings. First, the evoked responses dis-
criminate between the different stimulus temperatures. Second,
the initial phasic response is very similar across temperatures
and durations (see first local maximum in the evoked responses
plotted in Fig. 3A). This initial response is commonly quantified
as SCR or PDR and it presumably constitutes an unspecific response
to the onset of the heat stimulus. Third, the evoked responses of
skin conductance and pupil dilation look similar at first glance,
but the initial response of the pupil dilation has shorter latencies
and decreases faster than the skin conductance responses.

To further evaluate the relationship between physiological
measures and stimulus intensity, we quantified 3 measures for
each signal modality; the initial response (SCR and PDR), the global
measures (SCG and PDG), and the average response level relative to
baseline (SCL and PDL). Fig. 3B displays these summary statistics

Fig. 2. Grand means of pain ratings for each stimulus for the training data set. Pain
ratings were lower for the short trials (blue) and increased with temperature in
both duration conditions. This increase was stronger for the long trials (red). VAS,
visual analogue scale. Error bars indicate standard error of the mean (SEM).

Fig. 3. Pain ratings and evoked responses. (A) Physiological recordings aligned
to the stimulus onset at t = 0 seconds. The top panel shows skin conductance
responses, the bottom panel shows pupil diameter recordings. Both measures
clearly discriminate stimulus temperatures. Short stimuli lasted 8 seconds
(blue) and long stimuli lasted 20 seconds (red). Darker colors indicate higher
temperatures. The gray lines at 8 and 20 seconds denote stimulus offsets. The
mean of a 1-second baseline prior to stimulus onset was subtracted from
traces before plotting. (B) Plots of summary statistics against stimulus
temperatures are shown for short (blue) and long (red) trials. The top panels
show skin conductance variables and the bottom panels show measures of
pupil diameter. Skin conductance response (SCR) and pupil dilation response
(PDR) describe the initial peak after stimulus onset, skin conductance global
amplitude (SCG) and pupil diameter global peak (PDG) describe the maxi-
mum amplitude, and skin conductance level (SCL) and pupil dilation level
(PDL) are the average levels over the stimulation period. Error bars indicate
standard error of the mean (SEM). (C) Averaged correlations of summary
statistics, temperature (Temp.), and pain ratings (visual analogue scale [VAS])
are shown for short and long trials in the upper and lower section,
respectively.
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for all stimulus conditions. The SCR and PDR variables describe the
first peak amplitude in the evoked responses and do not scale with
stimulus temperature. The 2 variables describing the maximum
amplitude during the long pain stimuli, SCG and PDG, differentiate
between temperatures. For the short stimuli, PDG does not clearly
differentiate between temperatures. A similar pattern was ob-
served for the level statistics (SCL and PDL).

As the focus of this study is on the prediction of pain by phys-
iological measures, we did not use factorial tests for effects of stim-
ulus features on physiological responses. Instead we computed
bivariate correlations between the physiological variables, pain
ratings, and stimulus temperatures separately for long and short
trials (Fig. 3C). Interestingly, neither the SCR nor the PDR ampli-
tudes correlated with stimulus intensity and pain rating (all
j�rj 6 0:08, except for short trials SCR and VAS �r ¼ 0:26). The other
summary statistics (SCG, PDG, SCL, and PDL) were linearly related
to pain ratings and less to temperature (mean difference between
temperature and ratings of D�r ¼ 0:24 for short trials and D�r ¼ 0:02
for long trials; Fig. 3C). The global amplitude measures correlated
with reported pain in short trials (SCG: �r ¼ 0:59; PDG: �r ¼ 0:47)
and long trials (SCG: �r ¼ 0:51; PDG: �r ¼ 0:62). The SCL correlated
slightly less with pain reports (long stimuli: �r ¼ 0:49; short stim-
uli: �r ¼ 0:55). The variables correlating highest with pain ratings
were SCG and PDG, respectively. We therefore chose these vari-
ables to predict pain ratings by summary statistics.

3.3. Pain prediction

We then turned to pain prediction by regression models. First,
the SCG and PDG amplitudes (together with an intercept) were
used as predictors in a linear regression model. Separate regression
models were used for long and short trials, respectively. The

correlation between observed and pain ratings predicted by the 2
regression models were r = 0.60 for short trials and r = 0.62 for long
trials (all model fit parameters are shown in Table 1). We next
evaluated the model fit using BIC, thereby controlling for the num-
ber of predictors. BIC values for the summary statistic regression
models were 2556.2 for short trials and 2606.9 for the long trials.
Model fits of the summary statistics regression were then com-
pared to the PCR using BIC values. The PCR model represents indi-
vidual trial time-courses by using principal components (Methods
and Fig. 1B). BIC values of the PCR models were lower than for the
summary statistics approach, indicating better model fit by the
PCR (BICshort = 2545.2; BIClong = 2541.2). All other fit parameters
(ie, RMSE, r, and adjusted R2) favored the PCR models over the sum-
mary statistic models (Table 1). The correlation between observed
pain ratings and PCR predictions in long trials was r = 0.70 (Fig. 4A)
and r = 0.63 for short trials. Interestingly, prediction performance
based on our physiological recordings is comparable to the perfor-
mance of r = 0.74 achieved by prediction from pain processing
brain areas [37].

Comparing correlations between observed and predicted rat-
ings obtained from PCR and summary statistic models [24] re-
vealed higher correlations for the PCR model for long trials
(z = 3.37; P < 0.001). For short trials, no significant difference in
correlations between predicted and observed ratings was found
(z = 1.03; P = 0.30).

Having identified better prediction by incorporating temporal
information for long stimuli, we next evaluated the contribution
of data points over time. This is possible by projecting the compo-
nent score regression weights back to the temporal dimension, that
is, onto the individual data points of skin conductance and pupil
diameter (Fig. 4B). For both measures, skin conductance and pupil
diameter, weight values showed an initial dip and a peak during

Fig. 4. Prediction and prediction weights. (A) Observed pain ratings plotted against the predicted pain ratings from the principal component regression model for short trials
(top) and long trials (bottom). The correlation between observed and predicted pain ratings was r = 0.63 for short trials and r = 0.70 for long trials. Each dot corresponds to one
trial. (B) Prediction weights (solid lines) for individual data points are plotted for short trials (top) and long trials (bottom). The grand mean of normalized physiological
responses are plotted on the same axes (dotted lines), scaled by a factor of 4. Skin conductance is plotted on the left side, pupil diameter on the right. All plots are aligned to
heat stimulus onset at t = 0 seconds. The gray bars denote data points at which the prediction weights are significantly different from 0 at false discovery rate (FDR) < 0.05.
Please note that the weight values depend on the scaling of the pain ratings and the number of data points in the physiological recordings. The weights of short and long trials
cannot be directly compared to each other.
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late heat stimulation. Significant and high prediction weights were
located around the peak of the physiological response, indicating
positive association of those samples with pain reports. The pat-
tern was similar for short and long trials (Fig. 4B). Please note that
the weights cannot be directly compared between the 2 trial types
because they are unstandardized. Weights need to be rescaled be-
fore applying prediction weights to a dataset of different length.
The weight curve holds information about how to compute a
weighted and scaled average of the physiological response to pre-
dict the subjective pain and which parts of the response are more
closely related to the pain report.

In order to validate the generalizability of the best-fitting
regression model, we used an independent test data set from 20
additional subjects who also experienced long heat pain stimuli
(20 seconds). Projecting the regression weights of the component
scores back to the time-space resulted in prediction weights for
individual data points and thus allowed for pain prediction in the
new data set. The correlation between observed and predicted pain
ratings was high (r = 0.52, P < 0.001; Fig. 5). The RMSE increased to
31.9. This increase may be related to the difference in average pain
ratings between the 2 data sets (M = 40.2 for the test set and
M = 57.3 for the training data). Application of prediction weights
to new data set resulted in model fit parameters (RMSE and r) com-
parable to the summary statistic regression in the training data set.

4. Discussion

Using temporal information about skin conductance and pupil
diameter responses, we identified a physiological signature of pain
perception. The signature is easy to record and predicts pain in sin-
gle trials on a continuous rating scale ranging from 0 to 100 across
different subjects and data sets. The temporally informed predic-
tion by principal component scores outperformed prediction by a
standard summary statistic, maximum amplitude. BIC values of
the PCR models were lower for both short and long trials. For long
heat pain stimuli, a z-test on the correlation coefficients between
predicted and observed ratings revealed a better fit of the PCR
model.

Pain ratings have rarely been parametrically predicted by bio-
logical measures of pain [17,37]. Instead, a categorical differentia-
tion has often been used in similar studies [5,21,22,31,34].
However, it is desirable not only to determine whether a subject
is currently in pain, but also to determine the pain intensity. Elec-
troencephalography and functional magnetic resonance imaging
(fMRI) have recently been proposed for this purpose [17,37]. Both

studies achieved good predictive accuracy, and the study by Wager
et al. [37] comprehensively demonstrated the specificity of their
marker for pain. These 2 studies and the present one evaluated
the relationship of a physiological pain response to pain reports
on a rating scale. It would be highly interesting to see how the 3
physiological signatures relate to each other and at the same time
to pain reports. Some studies evaluated bivariate relationships be-
tween brain responses and pain ratings [1,4,6], brain responses and
skin conductance [11,33], or between skin conductance and pain
ratings [7,10,23,25,34], but an investigation of all 3 variables at a
time is missing. Brain and autonomic markers might be highly cor-
related, and pain reports could, in principal, be less correlated to
any of the physiological variables. A hint toward this hypothesis
comes from the observation that both our PCR prediction and an
fMRI-based prediction [37] overestimate low pain ratings (see
Fig. 4A in this study and Fig. 1B in [37]). This may be due to the
intrinsic properties of the physiological responses or due to a non-
linear mapping of pain onto rating scales. Although subjects in the
current study were instructed to rate every nonpainful stimulus at
scale minimum, anecdotal reports during debriefing suggest that
some subjects also used the lower part of the scale to rate stimuli
around or below the pain threshold. It may also be the case that
physiological pain markers work only for painful stimuli and not
for innocuous stimuli [37]. With regard to the relationship of dif-
ferent physiological pain markers to pain reports, it could also be
that physiological measures are too noisy to perfectly predict pain
reports (or pain ratings may be noisy).

An anatomical link between nociceptive stimulation and the
observed autonomic responses might include the hypothalamus
and locus coeruleus (LC). Both structures receive nociceptive input
via spinohypothalamic and spinoreticular pathways, respectively.
The LC also projects back to the spinal cord dorsal horn [14] and
indirectly controls pupil dilation via the Edinger-Westphal nucleus
[8,12,26]. Autonomic nervous system activity and, particularly,
measures of its sympathetic division, like skin conductance and
pupil dilation, are at least partially controlled by the hypothalamus
and correlate very well with LC activity [8,10,26]. These projections
to and from hypothalamus and LC might link the observed auto-
nomic measures to pain processing in the brain.

As the goal of the current study was to investigate easily avail-
able pain markers, we used skin conductance and pupil diameter.
As mentioned above, electroencephalography and fMRI have previ-
ously been used for accurate pain prediction [17,37]. Nevertheless,
these methods seem to be rather expensive and impracticable for
routine use in experimental or clinical studies because they require
shielded recording environments and impose several restrictions on
experimental design and subjects. Peripheral physiological mark-
ers, on the other hand, impose only minimal restrictions on experi-
mental design and are affordable for many studies. We therefore
turned to 2 autonomic variables – skin conductance and pupil diam-
eter – and showed that these measures achieve a predictive accu-
racy similar to that of fMRI-based markers (correlation between
observed and predicted pain: rautonomic = 0.7 vs rfMRI = 0.74 [37]).

An important aspect of our prediction model is the use of a sin-
gle parameter set for all subjects, that is, we did not account for the
hierarchical structure of the data (see Chapman et al. [7]). This may
decrease prediction accuracy within the training sample, but
allows generalization, for example, application to new data. As
shown by the validation on the independent data set, the predic-
tion model generalizes well to new data sets, although the mean
pain level was lower in the test set.

Furthermore, pain markers and reports may differ between dif-
ferent types of pain. Until now, the proposed pain markers were
tested with only experimental heat pain stimuli. To extend the cur-
rent findings to other methods of pain induction or even to clinical
types of pain, further translational research is needed [18,30].

Fig. 5. Validation in an independent test data set. Prediction weights of the long-
trial principal component regression model were applied to skin conductance and
pupil diameter recordings obtained from 20 independent subjects.
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Inspection of the prediction weights assigned to individual data
points revealed a strong influence of late data points around the
global maximum of the response. This is in line with the observa-
tion that summary statistics considering the whole epoch (eg, SCG)
are well correlated with pain as reported in previous studies
[2,7,18,23,34]. The difference between summary statistics and
the PCR approach became stronger with longer stimuli and longer
physiological recordings. Interestingly, the data points around the
initial physiological response received negative weights. The
amplitude of the initial peak of the autonomic recordings was
unrelated to pain and stimulus temperature in terms of a linear
correlation. When this initial response is analyzed in isolation, it
is thus unrelated to pain perception. When all time points are con-
sidered simultaneously, its amplitude is de-weighted relative to
the later global peak.

Taken together, we identified an objective physiological predic-
tor of pain ratings that can be easily integrated into experimental
studies to corroborate subjective pain ratings of individual trials.
This is particularly helpful when subjects’ responses may be biased
or when subjects are not able to provide ratings. However, we
would like to stress that the absence of a physiological response
does not mean the absence of pain in a given subject. There may
be factors inhibiting a physiological response, although the current
predictor seems to slightly overestimate ratings in low pain trials.
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